Hybrid oversampling technique for imbalanced pattern recognition: Enhancing performance with Borderline Synthetic Minority oversampling and Generative Adversarial Networks

Md Manjurul Ahsan , Shivakumar Raman , Yingtao Liu , Zahed Siddique
{"title":"Hybrid oversampling technique for imbalanced pattern recognition: Enhancing performance with Borderline Synthetic Minority oversampling and Generative Adversarial Networks","authors":"Md Manjurul Ahsan ,&nbsp;Shivakumar Raman ,&nbsp;Yingtao Liu ,&nbsp;Zahed Siddique","doi":"10.1016/j.mlwa.2025.100637","DOIUrl":null,"url":null,"abstract":"<div><div>Class imbalance problems (CIP) are one of the potential challenges in developing unbiased Machine Learning models for predictions. CIP occurs when data samples are not equally distributed between two or multiple classes. Several synthetic oversampling techniques have been introduced to balance the imbalanced data by oversampling the minor samples. One of the potential drawbacks of existing oversampling techniques is that they often fail to focus on the data samples that lie at the border point and give more attention to the extreme observations, ultimately limiting the creation of more diverse data after oversampling, and that is almost the scenario for most of the oversampling strategies. As an effect, marginalization occurs after oversampling. To address these issues, in this work, we propose a hybrid oversampling technique, named Borderline Synthetic Minority Oversampling and Generative Adversarial Network (BSGAN), by combining the strengths of Borderline-Synthetic Minority Oversampling Technique (SMOTE) and Generative Adversarial Networks (GANs). This approach aims to generate more diverse data that follow Gaussian distributions, marking a significant contribution to the field of Artificial Intelligence. We tested BSGAN on ten highly imbalanced datasets, demonstrating its application in engineering, where it outperformed existing oversampling techniques, creating a more diverse dataset that follows a normal distribution after oversampling.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"20 ","pages":"Article 100637"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025000209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Class imbalance problems (CIP) are one of the potential challenges in developing unbiased Machine Learning models for predictions. CIP occurs when data samples are not equally distributed between two or multiple classes. Several synthetic oversampling techniques have been introduced to balance the imbalanced data by oversampling the minor samples. One of the potential drawbacks of existing oversampling techniques is that they often fail to focus on the data samples that lie at the border point and give more attention to the extreme observations, ultimately limiting the creation of more diverse data after oversampling, and that is almost the scenario for most of the oversampling strategies. As an effect, marginalization occurs after oversampling. To address these issues, in this work, we propose a hybrid oversampling technique, named Borderline Synthetic Minority Oversampling and Generative Adversarial Network (BSGAN), by combining the strengths of Borderline-Synthetic Minority Oversampling Technique (SMOTE) and Generative Adversarial Networks (GANs). This approach aims to generate more diverse data that follow Gaussian distributions, marking a significant contribution to the field of Artificial Intelligence. We tested BSGAN on ten highly imbalanced datasets, demonstrating its application in engineering, where it outperformed existing oversampling techniques, creating a more diverse dataset that follows a normal distribution after oversampling.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信