Inferring travel time preferences through a contextual feature fusion approach

IF 5.1 2区 工程技术 Q1 TRANSPORTATION
Adir Solomon , Johannes De Smedt , Monique Snoeck
{"title":"Inferring travel time preferences through a contextual feature fusion approach","authors":"Adir Solomon ,&nbsp;Johannes De Smedt ,&nbsp;Monique Snoeck","doi":"10.1016/j.tbs.2025.101023","DOIUrl":null,"url":null,"abstract":"<div><div>Digital navigation services are extensively employed to provide travelers with recommendations for reaching their destinations. However, most current navigation services primarily focus on time and distance when suggesting routes, neglecting the consideration of the value of travel time (VTT). VTT represents a mobility paradigm that recognizes travel time as an opportunity for various activities, such as work tasks or leisurely pursuits like listening to music. The incorporation of VTT facilitates the provision of personalized recommendations tailored to travelers’ individual preferences. In this study, we assess travelers’ VTT using four distinct elements: paid work, personal tasks, enjoyment, and fitness. To infer VTT, we propose an innovative approach that fuses features extracted from different contexts, including physical conditions (e.g., weather) and traveler attributes (e.g., gender, age). These extracted features are then input into our suggested machine learning framework, which comprises boosted decision trees and deep learning Transformers. The results demonstrate that our framework provides the most accurate VTT predictions when compared to traditional machine learning models and rule-based baselines. Additionally, the analysis of travelers’ VTT predictions reveals several intriguing patterns that contribute to a better understanding of their decision-making process when selecting a travel route.</div></div>","PeriodicalId":51534,"journal":{"name":"Travel Behaviour and Society","volume":"40 ","pages":"Article 101023"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Travel Behaviour and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214367X25000419","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Digital navigation services are extensively employed to provide travelers with recommendations for reaching their destinations. However, most current navigation services primarily focus on time and distance when suggesting routes, neglecting the consideration of the value of travel time (VTT). VTT represents a mobility paradigm that recognizes travel time as an opportunity for various activities, such as work tasks or leisurely pursuits like listening to music. The incorporation of VTT facilitates the provision of personalized recommendations tailored to travelers’ individual preferences. In this study, we assess travelers’ VTT using four distinct elements: paid work, personal tasks, enjoyment, and fitness. To infer VTT, we propose an innovative approach that fuses features extracted from different contexts, including physical conditions (e.g., weather) and traveler attributes (e.g., gender, age). These extracted features are then input into our suggested machine learning framework, which comprises boosted decision trees and deep learning Transformers. The results demonstrate that our framework provides the most accurate VTT predictions when compared to traditional machine learning models and rule-based baselines. Additionally, the analysis of travelers’ VTT predictions reveals several intriguing patterns that contribute to a better understanding of their decision-making process when selecting a travel route.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
7.70%
发文量
109
期刊介绍: Travel Behaviour and Society is an interdisciplinary journal publishing high-quality original papers which report leading edge research in theories, methodologies and applications concerning transportation issues and challenges which involve the social and spatial dimensions. In particular, it provides a discussion forum for major research in travel behaviour, transportation infrastructure, transportation and environmental issues, mobility and social sustainability, transportation geographic information systems (TGIS), transportation and quality of life, transportation data collection and analysis, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信