A reinforcement learning and predictive analytics approach for enhancing credit assessment in manufacturing

Abdul Razaque , Aliya Beishenaly , Zhuldyz Kalpeyeva , Raisa Uskenbayeva , Moldagulova Aiman Nikolaevna
{"title":"A reinforcement learning and predictive analytics approach for enhancing credit assessment in manufacturing","authors":"Abdul Razaque ,&nbsp;Aliya Beishenaly ,&nbsp;Zhuldyz Kalpeyeva ,&nbsp;Raisa Uskenbayeva ,&nbsp;Moldagulova Aiman Nikolaevna","doi":"10.1016/j.dajour.2025.100560","DOIUrl":null,"url":null,"abstract":"<div><div>The fundamental issue with a credit system for manufacturers and importers of commodities is inefficient credit assessment. Traditional techniques frequently produce inaccurate risk assessments and credit scores, resulting in financial losses for lenders, missing business growth possibilities, and less favorable client conditions. To overcome this issue, a comprehensive credit assessment scoring system should be implemented to increase importers’ confidence. The article proposes a predictive-based reinforcement learning (PRL) model to help manufacturers and importers acquire more accurate and dependable credit scores while avoiding default risk. Furthermore, the proposed PRL model enhances decision-making, system efficiency, and risk-tolerant financial conditions. To attain these cutting-edge objectives, the proposed PRL model combines three algorithms. Algorithm 1 collects and aggregates data to indicate areas for improvement if credit scoring is poor. Algorithm 2 uses reinforcement learning to validate and enhance bank scores. Algorithm 3 focuses on predictive modeling for bank scoring, ensuring that the credit decision-making system is operational and constantly improving. Furthermore, reinforcement learning leverages the features from local interpretable model-agnostic explanations (LIME) and shapely additive explanations (SHAP) to generate locally reliable explanations and attribute the contribution of each feature for determining the output of the model. The Python platform tests the proposed PRL to achieve the objectives. Based on the results, The PRL model markedly enhances credit assessment precision, achieving an accuracy of over 99.5%, which outstrips current methodologies such OCLA (96.12%), PSML (84.12%), and EMPCC (91.67%). Furthermore, the PRL model augments leverage ratios, rising from 2.75% in 2015 to 3.36% in 2024.5, and increases accounts receivable turnover from 4.38% in 2015 to 7.4% in 2024.5, surpassing alternative credit evaluation methodologies. This research highlights the novelty of combining predictive analytics and reinforcement learning to revolutionize credit assessment, providing a scalable and reliable solution for manufacturers and importers. The findings establish the PRL model as a transformative approach for creating risk-tolerant and efficient financial environments.</div></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"15 ","pages":"Article 100560"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662225000165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fundamental issue with a credit system for manufacturers and importers of commodities is inefficient credit assessment. Traditional techniques frequently produce inaccurate risk assessments and credit scores, resulting in financial losses for lenders, missing business growth possibilities, and less favorable client conditions. To overcome this issue, a comprehensive credit assessment scoring system should be implemented to increase importers’ confidence. The article proposes a predictive-based reinforcement learning (PRL) model to help manufacturers and importers acquire more accurate and dependable credit scores while avoiding default risk. Furthermore, the proposed PRL model enhances decision-making, system efficiency, and risk-tolerant financial conditions. To attain these cutting-edge objectives, the proposed PRL model combines three algorithms. Algorithm 1 collects and aggregates data to indicate areas for improvement if credit scoring is poor. Algorithm 2 uses reinforcement learning to validate and enhance bank scores. Algorithm 3 focuses on predictive modeling for bank scoring, ensuring that the credit decision-making system is operational and constantly improving. Furthermore, reinforcement learning leverages the features from local interpretable model-agnostic explanations (LIME) and shapely additive explanations (SHAP) to generate locally reliable explanations and attribute the contribution of each feature for determining the output of the model. The Python platform tests the proposed PRL to achieve the objectives. Based on the results, The PRL model markedly enhances credit assessment precision, achieving an accuracy of over 99.5%, which outstrips current methodologies such OCLA (96.12%), PSML (84.12%), and EMPCC (91.67%). Furthermore, the PRL model augments leverage ratios, rising from 2.75% in 2015 to 3.36% in 2024.5, and increases accounts receivable turnover from 4.38% in 2015 to 7.4% in 2024.5, surpassing alternative credit evaluation methodologies. This research highlights the novelty of combining predictive analytics and reinforcement learning to revolutionize credit assessment, providing a scalable and reliable solution for manufacturers and importers. The findings establish the PRL model as a transformative approach for creating risk-tolerant and efficient financial environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信