Arthur Ermatov, Melisande Kost, Xin Yin, Paul Butler, Mihir Dass, Ian D. Sharp, Tim Liedl, Thomas Bein* and Gregor Posnjak*,
{"title":"Fabrication of Functional 3D Nanoarchitectures via Atomic Layer Deposition on DNA Origami Crystals","authors":"Arthur Ermatov, Melisande Kost, Xin Yin, Paul Butler, Mihir Dass, Ian D. Sharp, Tim Liedl, Thomas Bein* and Gregor Posnjak*, ","doi":"10.1021/jacs.4c1723210.1021/jacs.4c17232","DOIUrl":null,"url":null,"abstract":"<p >While DNA origami is a powerful bottom-up fabrication technique, the physical and chemical stability of DNA nanostructures is generally limited to aqueous buffer conditions. Wet chemical silicification can stabilize these structures but does not add further functionality. Here, we demonstrate a versatile three-dimensional (3D) nanofabrication technique to conformally coat micrometer-sized DNA origami crystals with functional metal oxides via atomic layer deposition (ALD). In addition to depositing homogeneous and conformal nanometer-thin ZnO, TiO<sub>2</sub>, and IrO<sub>2</sub> (multi)layers inside SiO<sub>2</sub>-stabilized crystals, we establish a method to directly coat bare DNA crystals with ALD layers while maintaining the crystal integrity, enabled by critical point drying and low ALD process temperatures. As a proof-of-concept application, we demonstrate electrocatalytic water oxidation using ALD IrO<sub>2</sub>-coated DNA origami crystals, resulting in improved performance relative to that of planar films. Overall, our coating strategy establishes a tool set for designing custom-made 3D nanomaterials with precisely defined topologies and material compositions, combining the unique advantages of DNA origami and atomically controlled deposition of functional inorganic materials.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 11","pages":"9519–9527 9519–9527"},"PeriodicalIF":15.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c17232","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c17232","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
While DNA origami is a powerful bottom-up fabrication technique, the physical and chemical stability of DNA nanostructures is generally limited to aqueous buffer conditions. Wet chemical silicification can stabilize these structures but does not add further functionality. Here, we demonstrate a versatile three-dimensional (3D) nanofabrication technique to conformally coat micrometer-sized DNA origami crystals with functional metal oxides via atomic layer deposition (ALD). In addition to depositing homogeneous and conformal nanometer-thin ZnO, TiO2, and IrO2 (multi)layers inside SiO2-stabilized crystals, we establish a method to directly coat bare DNA crystals with ALD layers while maintaining the crystal integrity, enabled by critical point drying and low ALD process temperatures. As a proof-of-concept application, we demonstrate electrocatalytic water oxidation using ALD IrO2-coated DNA origami crystals, resulting in improved performance relative to that of planar films. Overall, our coating strategy establishes a tool set for designing custom-made 3D nanomaterials with precisely defined topologies and material compositions, combining the unique advantages of DNA origami and atomically controlled deposition of functional inorganic materials.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.