Wanpeng Lu, Claudia E. Tait, Gokay Avci, Xian’e Li, Agamemnon E. Crumpton, Paul Shao, Catherine M. Aitchison, Fabien Ceugniet, Yuyun Yao, Mark D. Frogley, Donato Decarolis, Nan Yao, Kim E. Jelfs and Iain McCulloch*,
{"title":"Cobalt-Embedded Metal–Covalent Organic Frameworks for CO2 Photoreduction","authors":"Wanpeng Lu, Claudia E. Tait, Gokay Avci, Xian’e Li, Agamemnon E. Crumpton, Paul Shao, Catherine M. Aitchison, Fabien Ceugniet, Yuyun Yao, Mark D. Frogley, Donato Decarolis, Nan Yao, Kim E. Jelfs and Iain McCulloch*, ","doi":"10.1021/jacs.4c1845010.1021/jacs.4c18450","DOIUrl":null,"url":null,"abstract":"<p >With the pressing urgency to reduce carbon footprint, photocatalytic carbon dioxide reduction has attracted growing attention as a sustainable mitigating option. Considering the important role of catalytic active sites (CASs) in the catalytic processes, control and design of the density and environment of CASs could enhance the catalyst performance. Herein, we report a novel metal–covalent organic framework (MCOF), MCOF-Co-315, featuring earth-abundant Co cocatalysts and conjugation through a covalently bonded backbone. MCOF-Co-315 showed a CO production rate of 1616 μmol g<sup>–1</sup> h<sup>–1</sup> utilizing Ru(bpy)<sub>3</sub>Cl<sub>2</sub> as photosensitizer and triethanolamine (TEOA) as sacrificial electron donor with a 1.5 AM filter, vis mirror module (390–740 nm), and irradiation intensity adjusted to 1 sun and an especially outstanding apparent quantum yield (AQY) of 9.13% at 450 nm. The photocatalytic reaction was studied with electron paramagnetic resonance (EPR) spectroscopy, X-ray absorption near-edge structure (XANES), and in situ synchrotron Fourier Transform Infrared (FT-IR) spectroscopy, and an underlying mechanism is proposed.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 11","pages":"9056–9061 9056–9061"},"PeriodicalIF":15.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c18450","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c18450","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the pressing urgency to reduce carbon footprint, photocatalytic carbon dioxide reduction has attracted growing attention as a sustainable mitigating option. Considering the important role of catalytic active sites (CASs) in the catalytic processes, control and design of the density and environment of CASs could enhance the catalyst performance. Herein, we report a novel metal–covalent organic framework (MCOF), MCOF-Co-315, featuring earth-abundant Co cocatalysts and conjugation through a covalently bonded backbone. MCOF-Co-315 showed a CO production rate of 1616 μmol g–1 h–1 utilizing Ru(bpy)3Cl2 as photosensitizer and triethanolamine (TEOA) as sacrificial electron donor with a 1.5 AM filter, vis mirror module (390–740 nm), and irradiation intensity adjusted to 1 sun and an especially outstanding apparent quantum yield (AQY) of 9.13% at 450 nm. The photocatalytic reaction was studied with electron paramagnetic resonance (EPR) spectroscopy, X-ray absorption near-edge structure (XANES), and in situ synchrotron Fourier Transform Infrared (FT-IR) spectroscopy, and an underlying mechanism is proposed.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.