Compression of Molybdenum Blue Polyoxometalate Cluster Rings

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Vishal Lakhanpal, Melanie Guillén-Soler, Laia Vilà-Nadal, De-Liang Long, Leroy Cronin
{"title":"Compression of Molybdenum Blue Polyoxometalate Cluster Rings","authors":"Vishal Lakhanpal, Melanie Guillén-Soler, Laia Vilà-Nadal, De-Liang Long, Leroy Cronin","doi":"10.1021/jacs.5c00187","DOIUrl":null,"url":null,"abstract":"The self-assembly of polyoxometalate (POM) clusters remains challenging because they heavily depend on highly sensitive synthetic conditions that produce a vast library of potential building blocks and subunits such that explicit control is hard. This work reports new strategies to construct compressed molybdenum blue (MB) type cluster rings with a new range of giant MB POM clusters {Mo<sub>54</sub>}, {Mo<sub>58</sub>}, {Mo<sub>85</sub>}, and {Mo<sub>108</sub>}. These MB clusters prove the limits of the ring structure archetype, showing that it is possible to compress the ring by 100 metal atoms from 154 to 54 yet keep the electronic structure and ring shape. These structures comprise distorted pentagonal building blocks. The compression of the ring is achieved by using a {Mo<sub>3</sub>S} unit and {Mo<sub>5</sub>} bridging units. The {Mo<sub>85</sub>} and {Mo<sub>108</sub>} clusters exhibit a unique closed architecture, and redox studies demonstrate the reduced nature of these clusters.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"88 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c00187","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The self-assembly of polyoxometalate (POM) clusters remains challenging because they heavily depend on highly sensitive synthetic conditions that produce a vast library of potential building blocks and subunits such that explicit control is hard. This work reports new strategies to construct compressed molybdenum blue (MB) type cluster rings with a new range of giant MB POM clusters {Mo54}, {Mo58}, {Mo85}, and {Mo108}. These MB clusters prove the limits of the ring structure archetype, showing that it is possible to compress the ring by 100 metal atoms from 154 to 54 yet keep the electronic structure and ring shape. These structures comprise distorted pentagonal building blocks. The compression of the ring is achieved by using a {Mo3S} unit and {Mo5} bridging units. The {Mo85} and {Mo108} clusters exhibit a unique closed architecture, and redox studies demonstrate the reduced nature of these clusters.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信