FRNet: Frustum-Range Networks for Scalable LiDAR Segmentation

Xiang Xu;Lingdong Kong;Hui Shuai;Qingshan Liu
{"title":"FRNet: Frustum-Range Networks for Scalable LiDAR Segmentation","authors":"Xiang Xu;Lingdong Kong;Hui Shuai;Qingshan Liu","doi":"10.1109/TIP.2025.3550011","DOIUrl":null,"url":null,"abstract":"LiDAR segmentation has become a crucial component of advanced autonomous driving systems. Recent range-view LiDAR segmentation approaches show promise for real-time processing. However, they inevitably suffer from corrupted contextual information and rely heavily on post-processing techniques for prediction refinement. In this work, we propose FRNet, a simple yet powerful method aimed at restoring the contextual information of range image pixels using corresponding frustum LiDAR points. First, a frustum feature encoder module is used to extract per-point features within the frustum region, which preserves scene consistency and is critical for point-level predictions. Next, a frustum-point fusion module is introduced to update per-point features hierarchically, enabling each point to extract more surrounding information through the frustum features. Finally, a head fusion module is used to fuse features at different levels for final semantic predictions. Extensive experiments conducted on four popular LiDAR segmentation benchmarks under various task setups demonstrate the superiority of FRNet. Notably, FRNet achieves 73.3% and 82.5% mIoU scores on the testing sets of SemanticKITTI and nuScenes. While achieving competitive performance, FRNet operates 5 times faster than state-of-the-art approaches. Such high efficiency opens up new possibilities for more scalable LiDAR segmentation. The code has been made publicly available at <uri>https://github.com/Xiangxu-0103/FRNet</uri>.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"2173-2186"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10930660/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

LiDAR segmentation has become a crucial component of advanced autonomous driving systems. Recent range-view LiDAR segmentation approaches show promise for real-time processing. However, they inevitably suffer from corrupted contextual information and rely heavily on post-processing techniques for prediction refinement. In this work, we propose FRNet, a simple yet powerful method aimed at restoring the contextual information of range image pixels using corresponding frustum LiDAR points. First, a frustum feature encoder module is used to extract per-point features within the frustum region, which preserves scene consistency and is critical for point-level predictions. Next, a frustum-point fusion module is introduced to update per-point features hierarchically, enabling each point to extract more surrounding information through the frustum features. Finally, a head fusion module is used to fuse features at different levels for final semantic predictions. Extensive experiments conducted on four popular LiDAR segmentation benchmarks under various task setups demonstrate the superiority of FRNet. Notably, FRNet achieves 73.3% and 82.5% mIoU scores on the testing sets of SemanticKITTI and nuScenes. While achieving competitive performance, FRNet operates 5 times faster than state-of-the-art approaches. Such high efficiency opens up new possibilities for more scalable LiDAR segmentation. The code has been made publicly available at https://github.com/Xiangxu-0103/FRNet.
FRNet:可扩展激光雷达分割的截距网络
激光雷达分割已成为先进自动驾驶系统的重要组成部分。最近的距离视图激光雷达分割方法显示出实时处理的前景。然而,它们不可避免地会受到上下文信息损坏的影响,并且严重依赖后处理技术来进行预测改进。在这项工作中,我们提出了FRNet,一种简单而强大的方法,旨在使用相应的激光雷达截点恢复距离图像像素的上下文信息。首先,利用截锥体特征编码器模块提取截锥体区域内的每点特征,保持场景一致性,对点级预测至关重要。其次,引入锥点融合模块,对每点特征进行分层更新,使每个点能够通过锥点特征提取更多的周围信息。最后,使用头部融合模块对不同层次的特征进行融合,以实现最终的语义预测。在各种任务设置下对四种流行的LiDAR分割基准进行了大量实验,证明了FRNet的优越性。值得注意的是,FRNet在SemanticKITTI和nuScenes的测试集上分别获得了73.3%和82.5%的mIoU分数。在实现竞争性性能的同时,FRNet的运行速度比最先进的方法快5倍。这种高效率为更可扩展的激光雷达分割开辟了新的可能性。该代码已在https://github.com/Xiangxu-0103/FRNet上公开发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信