Establishment and molecular characterisation of patient-derived organoids for primary central nervous system lymphoma

IF 12.8 1区 医学 Q1 HEMATOLOGY
Shengjie Li, Jun Ren, Jianing Wu, Zuguang Xia, Yingzhu Li, Chengxun Li, Wenjun Cao
{"title":"Establishment and molecular characterisation of patient-derived organoids for primary central nervous system lymphoma","authors":"Shengjie Li, Jun Ren, Jianing Wu, Zuguang Xia, Yingzhu Li, Chengxun Li, Wenjun Cao","doi":"10.1038/s41375-025-02562-1","DOIUrl":null,"url":null,"abstract":"<p>Primary central nervous system lymphoma (PCNSL) exhibits substantial intratumoural and intertumoural heterogeneity, complicating the development of effective treatment methods. Existing in vitro models fail to simulate the cellular and mutational diversity of native tumours and require prolonged generation times. Therefore, we developed a culture method for patient-derived PCNSL organoids (CLOs) and evaluated the organoids through extensive molecular characterisation, histopathological analysis, single-nucleus RNA sequencing, bulk RNA sequencing and whole-exome sequencing. These CLOs accurately mimicked the histological attributes, gene expression landscapes and mutational profiles of their original tumours. Single-nucleus RNA sequencing also revealed that CLOs maintained cell-type heterogeneity and the molecular signatures of their original tumours. CLOs were generated within 2 weeks, demonstrating rapid development and reliability. Therapeutic profiling was performed on three selected CLOs treated with four standard drugs. The CLOs exhibited specific sensitivity to methotrexate, and resistance to dexamethasone, ibrutinib and rituximab, suggesting that CLOs may be valuable tools for reflecting drug sensitivities. Taken together, these results emphasise that CLOs effectively emulate the key characteristics of PCNSL, increasing the understanding of the genetic landscape of this complex disease. CLOs provide a rapid and reliable platform for exploring individualised treatment strategies, potentially accelerating the transition of research findings to clinical practice.</p><figure></figure>","PeriodicalId":18109,"journal":{"name":"Leukemia","volume":"11 1","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukemia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41375-025-02562-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Primary central nervous system lymphoma (PCNSL) exhibits substantial intratumoural and intertumoural heterogeneity, complicating the development of effective treatment methods. Existing in vitro models fail to simulate the cellular and mutational diversity of native tumours and require prolonged generation times. Therefore, we developed a culture method for patient-derived PCNSL organoids (CLOs) and evaluated the organoids through extensive molecular characterisation, histopathological analysis, single-nucleus RNA sequencing, bulk RNA sequencing and whole-exome sequencing. These CLOs accurately mimicked the histological attributes, gene expression landscapes and mutational profiles of their original tumours. Single-nucleus RNA sequencing also revealed that CLOs maintained cell-type heterogeneity and the molecular signatures of their original tumours. CLOs were generated within 2 weeks, demonstrating rapid development and reliability. Therapeutic profiling was performed on three selected CLOs treated with four standard drugs. The CLOs exhibited specific sensitivity to methotrexate, and resistance to dexamethasone, ibrutinib and rituximab, suggesting that CLOs may be valuable tools for reflecting drug sensitivities. Taken together, these results emphasise that CLOs effectively emulate the key characteristics of PCNSL, increasing the understanding of the genetic landscape of this complex disease. CLOs provide a rapid and reliable platform for exploring individualised treatment strategies, potentially accelerating the transition of research findings to clinical practice.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Leukemia
Leukemia 医学-血液学
CiteScore
18.10
自引率
3.50%
发文量
270
审稿时长
3-6 weeks
期刊介绍: Title: Leukemia Journal Overview: Publishes high-quality, peer-reviewed research Covers all aspects of research and treatment of leukemia and allied diseases Includes studies of normal hemopoiesis due to comparative relevance Topics of Interest: Oncogenes Growth factors Stem cells Leukemia genomics Cell cycle Signal transduction Molecular targets for therapy And more Content Types: Original research articles Reviews Letters Correspondence Comments elaborating on significant advances and covering topical issues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信