{"title":"Model-Based Safe Reinforcement Learning for Active Distribution Network Scheduling","authors":"Yuxiang Guan;Wenhao Ma;Liang Che;Mohammad Shahidehpour","doi":"10.1109/TSG.2025.3547843","DOIUrl":null,"url":null,"abstract":"Data-driven methods, especially reinforcement learning (RL), are adept at addressing uncertainties but are poor at ensuring safety, which is a critical requirement in active distribution networks (DNs). To address the problem of active DN scheduling and to overcome RL’ most critical drawback—security risk, this paper proposes a model-based safe RL framework that embeds a model-based safety module (MBSM) in the RL’s loop. The proposed framework can guarantee that the agent’s actions (real/reactive power outputs of controllable distributed energy resources (DERs)) strictly satisfy the DN’s operational security constraints. It does not rely on any expert knowledge and is suitable for application in large-scale systems. Comparative studies against existing Safe RL (SRL) and classic optimization methods verify that the proposed method achieves the best performance in terms of DERs operating cost and renewable energy consumption while strictly satisfying the DN’s operational security constraints.","PeriodicalId":13331,"journal":{"name":"IEEE Transactions on Smart Grid","volume":"16 3","pages":"2375-2388"},"PeriodicalIF":8.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Smart Grid","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10930731/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Data-driven methods, especially reinforcement learning (RL), are adept at addressing uncertainties but are poor at ensuring safety, which is a critical requirement in active distribution networks (DNs). To address the problem of active DN scheduling and to overcome RL’ most critical drawback—security risk, this paper proposes a model-based safe RL framework that embeds a model-based safety module (MBSM) in the RL’s loop. The proposed framework can guarantee that the agent’s actions (real/reactive power outputs of controllable distributed energy resources (DERs)) strictly satisfy the DN’s operational security constraints. It does not rely on any expert knowledge and is suitable for application in large-scale systems. Comparative studies against existing Safe RL (SRL) and classic optimization methods verify that the proposed method achieves the best performance in terms of DERs operating cost and renewable energy consumption while strictly satisfying the DN’s operational security constraints.
期刊介绍:
The IEEE Transactions on Smart Grid is a multidisciplinary journal that focuses on research and development in the field of smart grid technology. It covers various aspects of the smart grid, including energy networks, prosumers (consumers who also produce energy), electric transportation, distributed energy resources, and communications. The journal also addresses the integration of microgrids and active distribution networks with transmission systems. It publishes original research on smart grid theories and principles, including technologies and systems for demand response, Advance Metering Infrastructure, cyber-physical systems, multi-energy systems, transactive energy, data analytics, and electric vehicle integration. Additionally, the journal considers surveys of existing work on the smart grid that propose new perspectives on the history and future of intelligent and active grids.