{"title":"An attack on p-adic lattice public-key encryption cryptosystems and signature schemes","authors":"Chi Zhang","doi":"10.1007/s10623-025-01618-8","DOIUrl":null,"url":null,"abstract":"<p>Lattices have many significant applications in cryptography. In 2021, the <i>p</i>-adic signature scheme and public-key encryption cryptosystem were introduced. They are based on the Longest Vector Problem (LVP) and the Closest Vector Problem (CVP) in <i>p</i>-adic lattices. These problems are considered to be challenging and there are no known deterministic polynomial time algorithms to solve them. In this paper, we improve the LVP algorithm in local fields. The modified LVP algorithm is a deterministic polynomial time algorithm when the field is totally ramified and <i>p</i> is a polynomial in the rank of the input lattice. We utilize this algorithm to attack the above schemes so that we are able to forge a valid signature of any message and decrypt any ciphertext. Although these schemes are broken, this work does not mean that <i>p</i>-adic lattices are not suitable in constructing cryptographic primitives. We propose some possible modifications to avoid our attack at the end of this paper.\n</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"69 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-025-01618-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Lattices have many significant applications in cryptography. In 2021, the p-adic signature scheme and public-key encryption cryptosystem were introduced. They are based on the Longest Vector Problem (LVP) and the Closest Vector Problem (CVP) in p-adic lattices. These problems are considered to be challenging and there are no known deterministic polynomial time algorithms to solve them. In this paper, we improve the LVP algorithm in local fields. The modified LVP algorithm is a deterministic polynomial time algorithm when the field is totally ramified and p is a polynomial in the rank of the input lattice. We utilize this algorithm to attack the above schemes so that we are able to forge a valid signature of any message and decrypt any ciphertext. Although these schemes are broken, this work does not mean that p-adic lattices are not suitable in constructing cryptographic primitives. We propose some possible modifications to avoid our attack at the end of this paper.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.