T. L. Breeze, B. M. Huddart, A. Hernández-Melián, N. P. Bentley, D. A. Mayoh, G. D. A. Wood, G. Balakrishnan, J. Wilkinson, F. L. Pratt, T. J. Hicken, S. J. Clark, T. Lancaster
{"title":"Muon spectroscopy investigation of anomalous dynamic magnetism in NiI2","authors":"T. L. Breeze, B. M. Huddart, A. Hernández-Melián, N. P. Bentley, D. A. Mayoh, G. D. A. Wood, G. Balakrishnan, J. Wilkinson, F. L. Pratt, T. J. Hicken, S. J. Clark, T. Lancaster","doi":"10.1103/physrevb.111.104420","DOIUrl":null,"url":null,"abstract":"We present the results of muon-spin relaxation (μ</a:mi>+</a:mo></a:msup>SR</a:mi></a:mrow></a:math>) measurements of the van der Waals magnet <b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:msub><b:mi>NiI</b:mi><b:mn>2</b:mn></b:msub></b:math>, which probe magnetic phase transitions at <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:msub><c:mi>T</c:mi><c:mrow><c:mi mathvariant=\"normal\">N</c:mi><c:mn>1</c:mn></c:mrow></c:msub><c:mo>=</c:mo><c:mn>73</c:mn><c:mspace width=\"0.16em\"/><c:mi mathvariant=\"normal\">K</c:mi></c:mrow></c:math> and <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\"><g:mrow><g:msub><g:mi>T</g:mi><g:mrow><g:mi mathvariant=\"normal\">N</g:mi><g:mn>2</g:mn></g:mrow></g:msub><g:mo>=</g:mo><g:mn>62</g:mn><g:mspace width=\"0.16em\"/><g:mi mathvariant=\"normal\">K</g:mi></g:mrow></g:math>. Supporting density functional theory (DFT) calculations allow the determination of a single muon stopping site whose magnetic environment is consistent with the proposed ground-state magnetic structure. <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\"><k:mrow><k:msup><k:mi>μ</k:mi><k:mo>+</k:mo></k:msup><k:mi>SR</k:mi></k:mrow></k:math> measurements of the dynamics reveal behavior consistent with spin-wave excitations below <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\"><l:msub><l:mi>T</l:mi><l:mrow><l:mi mathvariant=\"normal\">N</l:mi><l:mn>2</l:mn></l:mrow></l:msub></l:math>. In the region <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\"><n:mrow><n:msub><n:mi>T</n:mi><n:mrow><n:mi mathvariant=\"normal\">N</n:mi><n:mn>2</n:mn></n:mrow></n:msub><n:mo><</n:mo><n:mi>T</n:mi><n:mo><</n:mo><n:msub><n:mi>T</n:mi><n:mrow><n:mi mathvariant=\"normal\">N</n:mi><n:mn>1</n:mn></n:mrow></n:msub></n:mrow></n:math> the character of the dynamics changes qualitatively, resulting in an unusual region of temperature-independent fluctuations. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"25 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.104420","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We present the results of muon-spin relaxation (μ+SR) measurements of the van der Waals magnet NiI2, which probe magnetic phase transitions at TN1=73K and TN2=62K. Supporting density functional theory (DFT) calculations allow the determination of a single muon stopping site whose magnetic environment is consistent with the proposed ground-state magnetic structure. μ+SR measurements of the dynamics reveal behavior consistent with spin-wave excitations below TN2. In the region TN2<T<TN1 the character of the dynamics changes qualitatively, resulting in an unusual region of temperature-independent fluctuations. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter