Squaramide-Based Ion Pair Receptors Can Facilitate Transmem-brane Transport of KCl and Zwitterions Including Highly Polar Amino Acids

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Marta Zaleskaya-Hernik, Rayhanus Salam, Mario J González, Marcin Wilczek, Łukasz Dobrzycki, Nathalie Busschaert, Jan Romanski
{"title":"Squaramide-Based Ion Pair Receptors Can Facilitate Transmem-brane Transport of KCl and Zwitterions Including Highly Polar Amino Acids","authors":"Marta Zaleskaya-Hernik, Rayhanus Salam, Mario J González, Marcin Wilczek, Łukasz Dobrzycki, Nathalie Busschaert, Jan Romanski","doi":"10.1039/d5sc00866b","DOIUrl":null,"url":null,"abstract":"Misregulation of transmembrane ion transport in biological systems has been linked to a variety of diseases. As a result, supramolecular chemists have been trying to develop small molecules that facilitate the transmembrane transport of several ionic species. However, ion transport by small molecules is a passive process and needs to be overall charge neutral (i.e., when an ion is transported across a membrane, another ion needs to be transported as well to avoid charge separation). Ion pair receptors could therefore have great potential as transmembrane ion transporters because they can facilitate transport of an overall neutral species. Furthermore, ditopic ion pair receptors also have the potential to transport biologically important zwitterionic species, such as amino acids. In this manuscript, we report the synthesis of a series of ditopic receptors based on squaramides as the anion binding unit and 18-crown-6 as the cation binding unit. UV-Vis and NMR titrations revealed that these compounds can bind a variety of chloride salts, especially KCl. Furthermore, liquid-liquid extractions and transport experiments using bulk liquid membranes and liposomes indicate that these ditopic receptors are capable of transporting chloride salts and hydrophilic amino acids. In fact, compound 5 was even able to facilitate the transport of amino acids with charged side chains at physiological pH (arginine and glutamate), making it the first example of a small molecule that can transport these highly polar and charge-dense species. These findings open up the possibility of using these receptors in a wide range of biological applications.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"40 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc00866b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Misregulation of transmembrane ion transport in biological systems has been linked to a variety of diseases. As a result, supramolecular chemists have been trying to develop small molecules that facilitate the transmembrane transport of several ionic species. However, ion transport by small molecules is a passive process and needs to be overall charge neutral (i.e., when an ion is transported across a membrane, another ion needs to be transported as well to avoid charge separation). Ion pair receptors could therefore have great potential as transmembrane ion transporters because they can facilitate transport of an overall neutral species. Furthermore, ditopic ion pair receptors also have the potential to transport biologically important zwitterionic species, such as amino acids. In this manuscript, we report the synthesis of a series of ditopic receptors based on squaramides as the anion binding unit and 18-crown-6 as the cation binding unit. UV-Vis and NMR titrations revealed that these compounds can bind a variety of chloride salts, especially KCl. Furthermore, liquid-liquid extractions and transport experiments using bulk liquid membranes and liposomes indicate that these ditopic receptors are capable of transporting chloride salts and hydrophilic amino acids. In fact, compound 5 was even able to facilitate the transport of amino acids with charged side chains at physiological pH (arginine and glutamate), making it the first example of a small molecule that can transport these highly polar and charge-dense species. These findings open up the possibility of using these receptors in a wide range of biological applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信