{"title":"Dengue virus-host interactions: Structural and mechanistic insights for future therapeutic strategies","authors":"Moumita Khanra , Indrani Ghosh , Samima Khatun , Nilanjan Ghosh , Shovanlal Gayen","doi":"10.1016/j.jsb.2025.108196","DOIUrl":null,"url":null,"abstract":"<div><div>Dengue pathogen, transmitted by mosquitoes, poses a growing threat as it is capable of inflicting severe illness in humans. Around 40% of the global population is currently affected by the virus, resulting in thousands of fatalities each year. The genetic blueprint of the virus comprises 10 proteins. Three proteins serve as structural components: the capsid (C), the precursor of the membrane protein (PrM/M), and the envelope protein (E). The other proteins serve as non-structural (NS) proteins, consisting of NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. The virus relies on these NS proteins to expropriate host proteins for its replication. During their intracellular replication, these viruses engage with numerous host components and exploit the cellular machinery for tasks such as entry into various organs, propagation, and transmission. This review explores mainly the relationship between dengue viral protein and host proteins elucidating the development of viral-host interactions. These relationships between the virus and the host give important information on the processes behind viral replication and the etiology of disease, which in turn facilitates the creation of more potent treatment strategies.</div></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":"217 2","pages":"Article 108196"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847725000310","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dengue pathogen, transmitted by mosquitoes, poses a growing threat as it is capable of inflicting severe illness in humans. Around 40% of the global population is currently affected by the virus, resulting in thousands of fatalities each year. The genetic blueprint of the virus comprises 10 proteins. Three proteins serve as structural components: the capsid (C), the precursor of the membrane protein (PrM/M), and the envelope protein (E). The other proteins serve as non-structural (NS) proteins, consisting of NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. The virus relies on these NS proteins to expropriate host proteins for its replication. During their intracellular replication, these viruses engage with numerous host components and exploit the cellular machinery for tasks such as entry into various organs, propagation, and transmission. This review explores mainly the relationship between dengue viral protein and host proteins elucidating the development of viral-host interactions. These relationships between the virus and the host give important information on the processes behind viral replication and the etiology of disease, which in turn facilitates the creation of more potent treatment strategies.
期刊介绍:
Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure.
Techniques covered include:
• Light microscopy including confocal microscopy
• All types of electron microscopy
• X-ray diffraction
• Nuclear magnetic resonance
• Scanning force microscopy, scanning probe microscopy, and tunneling microscopy
• Digital image processing
• Computational insights into structure