{"title":"Pak1 dysregulates Pyruvate metabolism in PDAC cells by exerting a phosphorylation-mediated regulatory effect on PDHA1.","authors":"Sowmiya Murugan, Srikanth Swamy Swaroop B, Prarthana Gopinath, Roshni Saravanan, Sandhya Sundaram, Gouthaman Shanmugasundaram, Ganesh Venkatraman, Suresh Kumar Rayala","doi":"10.1016/j.jbc.2025.108409","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive form of pancreatic cancer with the worst prognosis. Treating PDAC poses significant challenges, as tumor cells adapt metabolic alterations to thrive in the hypoxic environment created by desmoplasia surrounding the tumor cells. p21-activated kinase (Pak1), a serine-threonine kinase is found to be upregulated in many solid tumors and promotes tumor progression via diverse signalling pathways. In this study, we focussed on exploring the role of Pak1 in mediating tumor cell metabolism. Deletion of the Pak1 gene reduced the tumorigenic potential of PDAC cells. Also, Pak1 regulated both glycolysis and mitochondrial respiration in PDAC cells, contributing to the Warburg phenomenon. Untargeted metabolomic analysis revealed that Pak1 was strongly associated with Pyruvate metabolism. Interestingly, we found that Pak1 interacted and phosphorylated Pyruvate dehydrogenase E1α (PDHA1) at Serine 152. This phosphorylation negatively regulates PDHA1 activity, implying the direct regulatory role of Pak1 in Pyruvate metabolism. Moreover, deleting the Pak1 gene altered the expression and activity of PDHA1 and LDHA, as both are involved in regulating the direction of pyruvate flux inside the cells. Our study demonstrated that Pak1 plays a significant role in PDAC metabolism and Warburg effect, partly by phosphorylating PDHA1.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108409"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108409","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive form of pancreatic cancer with the worst prognosis. Treating PDAC poses significant challenges, as tumor cells adapt metabolic alterations to thrive in the hypoxic environment created by desmoplasia surrounding the tumor cells. p21-activated kinase (Pak1), a serine-threonine kinase is found to be upregulated in many solid tumors and promotes tumor progression via diverse signalling pathways. In this study, we focussed on exploring the role of Pak1 in mediating tumor cell metabolism. Deletion of the Pak1 gene reduced the tumorigenic potential of PDAC cells. Also, Pak1 regulated both glycolysis and mitochondrial respiration in PDAC cells, contributing to the Warburg phenomenon. Untargeted metabolomic analysis revealed that Pak1 was strongly associated with Pyruvate metabolism. Interestingly, we found that Pak1 interacted and phosphorylated Pyruvate dehydrogenase E1α (PDHA1) at Serine 152. This phosphorylation negatively regulates PDHA1 activity, implying the direct regulatory role of Pak1 in Pyruvate metabolism. Moreover, deleting the Pak1 gene altered the expression and activity of PDHA1 and LDHA, as both are involved in regulating the direction of pyruvate flux inside the cells. Our study demonstrated that Pak1 plays a significant role in PDAC metabolism and Warburg effect, partly by phosphorylating PDHA1.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.