In vitro reconstitution reveals substrate selectivity of protein S-acyltransferases.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tanmay Mondal, James Song, Anirban Banerjee
{"title":"In vitro reconstitution reveals substrate selectivity of protein S-acyltransferases.","authors":"Tanmay Mondal, James Song, Anirban Banerjee","doi":"10.1016/j.jbc.2025.108406","DOIUrl":null,"url":null,"abstract":"<p><p>Protein S-acylation, commonly known as protein palmitoylation, is the most prevalent form of protein lipidation with ∼6000 target proteins and in humans, is catalyzed by 23 integral membrane enzymes of the zDHHC family. Recognition of its importance in cellular physiology as well as human diseases has undergone an explosive growth in recent years. Yet, the nature of zDHHC-substrate interactions has remained poorly understood for most zDHHC enzymes. Cell-based experiments indicate a promiscuous and complex zDHHC-substrate network whereas lack of in vitro reconstitution experiments has impeded insights into the nature of discrete zDHHC-substrate interactions. Here we report a substrate S-acylation reconstitution assay, called the Pep-PAT assay, using purified enzyme and peptide fragments of substrates. We use the Pep-PAT assay to investigate the substrate S-acylation of three different zDHHC enzymes on seven different substrates. Remarkably, all the zDHHC enzymes showed robust activity with certain substrates but not others. These in vitro reconstitution experiments indicate that there is a preferred substrate hierarchy for zDHHC enzymes. We further used the Pep-PAT assay to interrogate the role of neighboring residues around the target cysteine on S-acylation of PSD-95 and SARS-CoV-2 Spike protein. Select residues around the target cysteines have distinct impact on substrate S-acylation, leading to the first insights into how neighboring residues around the target cysteine affect substrate S-acylation by zDHHC enzymes. Finally, we validated the impact of neighboring residues on substrate S-acylation using in cellulo assays. Our experiments build a framework for understanding substrate S-acylation by zDHHC enzymes.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108406"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108406","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein S-acylation, commonly known as protein palmitoylation, is the most prevalent form of protein lipidation with ∼6000 target proteins and in humans, is catalyzed by 23 integral membrane enzymes of the zDHHC family. Recognition of its importance in cellular physiology as well as human diseases has undergone an explosive growth in recent years. Yet, the nature of zDHHC-substrate interactions has remained poorly understood for most zDHHC enzymes. Cell-based experiments indicate a promiscuous and complex zDHHC-substrate network whereas lack of in vitro reconstitution experiments has impeded insights into the nature of discrete zDHHC-substrate interactions. Here we report a substrate S-acylation reconstitution assay, called the Pep-PAT assay, using purified enzyme and peptide fragments of substrates. We use the Pep-PAT assay to investigate the substrate S-acylation of three different zDHHC enzymes on seven different substrates. Remarkably, all the zDHHC enzymes showed robust activity with certain substrates but not others. These in vitro reconstitution experiments indicate that there is a preferred substrate hierarchy for zDHHC enzymes. We further used the Pep-PAT assay to interrogate the role of neighboring residues around the target cysteine on S-acylation of PSD-95 and SARS-CoV-2 Spike protein. Select residues around the target cysteines have distinct impact on substrate S-acylation, leading to the first insights into how neighboring residues around the target cysteine affect substrate S-acylation by zDHHC enzymes. Finally, we validated the impact of neighboring residues on substrate S-acylation using in cellulo assays. Our experiments build a framework for understanding substrate S-acylation by zDHHC enzymes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信