Deep-sea photodynamic vision at low light level — Which is more important, prosthetic retinal or apo-rhodopsin moiety?

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zong Jie Cui
{"title":"Deep-sea photodynamic vision at low light level — Which is more important, prosthetic retinal or apo-rhodopsin moiety?","authors":"Zong Jie Cui","doi":"10.1096/fj.202500213R","DOIUrl":null,"url":null,"abstract":"<p>The special case of far-red vision of mesopelagic dragonfish <i>Malacosteus niger</i> facilitated by the presence in the rod outer segment of photosensitizer chlorin e6 from diet has drawn considerable attention both in vision research and in photodynamic action. Rhodopsin binding of Ce6 from either the extracellular or intracellular loops may exert different effects. Theoretical works predict that the extracellularly bound Ce6 upon absorption of red light produces a singlet oxygen, which could via an oxygen tunnel reach the Lys-tethered 11-cis-retinal, by way of peroxy–dioxetane intermediates, to enhance 11-cis- to all-trans-retinal isomerization, therefore triggering the ultrafast phototransduction process. Recent works on the permanent photodynamic activation of some A-class G protein-coupled receptors suggest that the singlet oxygen generated by Ce6 photodynamic action might also oxidize the scotopsin moiety of rhodopsin, leading to direct oxidative rhodopsin activation. More attention needs to be paid to the latter respects of the far-red vision process of the deep-sea dragonfish, with potential translational values.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202500213R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The special case of far-red vision of mesopelagic dragonfish Malacosteus niger facilitated by the presence in the rod outer segment of photosensitizer chlorin e6 from diet has drawn considerable attention both in vision research and in photodynamic action. Rhodopsin binding of Ce6 from either the extracellular or intracellular loops may exert different effects. Theoretical works predict that the extracellularly bound Ce6 upon absorption of red light produces a singlet oxygen, which could via an oxygen tunnel reach the Lys-tethered 11-cis-retinal, by way of peroxy–dioxetane intermediates, to enhance 11-cis- to all-trans-retinal isomerization, therefore triggering the ultrafast phototransduction process. Recent works on the permanent photodynamic activation of some A-class G protein-coupled receptors suggest that the singlet oxygen generated by Ce6 photodynamic action might also oxidize the scotopsin moiety of rhodopsin, leading to direct oxidative rhodopsin activation. More attention needs to be paid to the latter respects of the far-red vision process of the deep-sea dragonfish, with potential translational values.

低照度条件下的深海光动力视觉--人造视网膜和apo-rhodopsin分子哪个更重要?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The FASEB Journal
The FASEB Journal 生物-生化与分子生物学
CiteScore
9.20
自引率
2.10%
发文量
6243
审稿时长
3 months
期刊介绍: The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信