{"title":"The Influence of Length-Diameter Ratio of Cellulose on Friction Characteristics of Screw Surface Investigated by EDEM Simulation","authors":"Xuan Yin, Dingyao Zhang, Liqi Li, Bing Zhang","doi":"10.1002/mats.202400083","DOIUrl":null,"url":null,"abstract":"<p>This study integrates numerical simulations and tribological experiments using a plate-on-disc tribometer to examine the tribological behavior and wear mechanisms of cellulose materials in the solid transport screw of a parallel co-rotating twin-screw extruder. EDEM simulation results indicate that wear on the left screw primarily occurs on the screw threads while wear on the right screw is concentrated at the junction between the screw threads and the bottom of the screw groove. The meshing region experiences the most severe wear due to the combined effects of shear forces and contact stress. Tribological experiments with a plate-on-disc tribometer reveal that adding cellulose with higher aspect ratios reduces friction coefficients. When cellulose has a high aspect ratio, it improves the alignment of wear scar cracks and cellulose molecular chains on the friction contact surface. This results in a gradual alignment of rod-shaped structural cellulose in the direction of frictional sliding, which reduces impact-spalling wear, micro-cutting wear, and scratching abrasion wear. Additionally, cellulose with higher aspect ratios can withstand higher rotational friction speeds during high-speed friction, forming an orientation transfer layer on the friction contact surface. This enhances surface lubrication and reduces abrasive wear and adhesive wear.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"34 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202400083","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study integrates numerical simulations and tribological experiments using a plate-on-disc tribometer to examine the tribological behavior and wear mechanisms of cellulose materials in the solid transport screw of a parallel co-rotating twin-screw extruder. EDEM simulation results indicate that wear on the left screw primarily occurs on the screw threads while wear on the right screw is concentrated at the junction between the screw threads and the bottom of the screw groove. The meshing region experiences the most severe wear due to the combined effects of shear forces and contact stress. Tribological experiments with a plate-on-disc tribometer reveal that adding cellulose with higher aspect ratios reduces friction coefficients. When cellulose has a high aspect ratio, it improves the alignment of wear scar cracks and cellulose molecular chains on the friction contact surface. This results in a gradual alignment of rod-shaped structural cellulose in the direction of frictional sliding, which reduces impact-spalling wear, micro-cutting wear, and scratching abrasion wear. Additionally, cellulose with higher aspect ratios can withstand higher rotational friction speeds during high-speed friction, forming an orientation transfer layer on the friction contact surface. This enhances surface lubrication and reduces abrasive wear and adhesive wear.
期刊介绍:
Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.