Nanohydrogel of Curcumin/Berberine Co-Crystals Induces Apoptosis via Dual Covalent/Noncovalent Inhibition of Caspases in Endometrial Cancer Cell Lines: The Synergy Between Pharmacokinetics and Pharmacodynamics

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Feiyan Yan, Yan Wang, Lin Chen, Wei Cheng, Ernest Oduro-Kwateng, Mahmoud E. S. Soliman, Ting Yang
{"title":"Nanohydrogel of Curcumin/Berberine Co-Crystals Induces Apoptosis via Dual Covalent/Noncovalent Inhibition of Caspases in Endometrial Cancer Cell Lines: The Synergy Between Pharmacokinetics and Pharmacodynamics","authors":"Feiyan Yan,&nbsp;Yan Wang,&nbsp;Lin Chen,&nbsp;Wei Cheng,&nbsp;Ernest Oduro-Kwateng,&nbsp;Mahmoud E. S. Soliman,&nbsp;Ting Yang","doi":"10.1002/jmr.70004","DOIUrl":null,"url":null,"abstract":"<p>Endometrial cancer remains a significant therapeutic challenge due to drug resistance and heterogeneity. This study leverages the synergistic potential of curcumin (CUR) and berberine (BBR) co-crystals encapsulated in a nanohydrogel to address these challenges through a pharmacokinetically and pharmacodynamically targeted therapeutic strategy. The nanohydrogel formulation significantly improves the solubility, stability, and bioavailability of CUR/BBR co-crystals, optimizing their therapeutic delivery and sustained release under physiological and tumor microenvironment conditions. On the other hand, the dual inhibitory mechanism of CUR and BBR, with CUR covalently binding to the active site of caspase-3 and BBR non-covalently targeting the allosteric site, achieves enhanced apoptotic activity by disrupting both the catalytic and conformational functions of caspase-3. In vitro cytotoxicity assays demonstrate remarkable efficacy of the CUR/BBR nanohydrogel, achieving an IC50 of 12.36 μg/mL against HEC-59 endometrial cancer cells, significantly outperforming the individual components and the standard drug Camptothecin (IC50: 17.27 μg/mL). Caspase-3/7 assays confirm enhanced apoptosis induction for the nanohydrogel formulation compared to co-crystals alone and Camptothecin. Molecular dynamics simulations and binding free energy analyses further validate the synergistic interaction of CUR and BBR in their dual binding mode. This study introduces a novel therapeutic approach by enhancing drug delivery and dual targeting mechanisms, demonstrating the potential of CUR-BBR nanohydrogel as a robust therapy for EC. This strategy offers a promising platform for addressing drug resistance and improving outcomes in endometrial cancer therapy.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"38 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmr.70004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Recognition","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmr.70004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Endometrial cancer remains a significant therapeutic challenge due to drug resistance and heterogeneity. This study leverages the synergistic potential of curcumin (CUR) and berberine (BBR) co-crystals encapsulated in a nanohydrogel to address these challenges through a pharmacokinetically and pharmacodynamically targeted therapeutic strategy. The nanohydrogel formulation significantly improves the solubility, stability, and bioavailability of CUR/BBR co-crystals, optimizing their therapeutic delivery and sustained release under physiological and tumor microenvironment conditions. On the other hand, the dual inhibitory mechanism of CUR and BBR, with CUR covalently binding to the active site of caspase-3 and BBR non-covalently targeting the allosteric site, achieves enhanced apoptotic activity by disrupting both the catalytic and conformational functions of caspase-3. In vitro cytotoxicity assays demonstrate remarkable efficacy of the CUR/BBR nanohydrogel, achieving an IC50 of 12.36 μg/mL against HEC-59 endometrial cancer cells, significantly outperforming the individual components and the standard drug Camptothecin (IC50: 17.27 μg/mL). Caspase-3/7 assays confirm enhanced apoptosis induction for the nanohydrogel formulation compared to co-crystals alone and Camptothecin. Molecular dynamics simulations and binding free energy analyses further validate the synergistic interaction of CUR and BBR in their dual binding mode. This study introduces a novel therapeutic approach by enhancing drug delivery and dual targeting mechanisms, demonstrating the potential of CUR-BBR nanohydrogel as a robust therapy for EC. This strategy offers a promising platform for addressing drug resistance and improving outcomes in endometrial cancer therapy.

Abstract Image

姜黄素/小檗碱共晶纳米水凝胶通过双共价/非共价抑制子宫内膜癌细胞半胱天冬酶诱导细胞凋亡:药代动力学和药效学的协同作用
由于耐药和异质性,子宫内膜癌仍然是一个重大的治疗挑战。本研究利用纳米水凝胶封装的姜黄素(CUR)和小檗碱(BBR)共晶的协同潜力,通过药代动力学和药效学靶向治疗策略来解决这些挑战。纳米水凝胶配方显著提高了CUR/BBR共晶的溶解度、稳定性和生物利用度,优化了其在生理和肿瘤微环境条件下的治疗递送和缓释。另一方面,CUR和BBR的双重抑制机制,即CUR共价结合caspase-3的活性位点,而BBR非共价靶向变构位点,通过破坏caspase-3的催化和构象功能来增强凋亡活性。体外细胞毒性实验表明,CUR/BBR纳米水凝胶对HEC-59子宫内膜癌细胞的IC50为12.36 μg/mL,显著优于单个成分和标准药物喜树碱(IC50: 17.27 μg/mL)。Caspase-3/7实验证实,与单独的共晶和喜树碱相比,纳米水凝胶配方增强了细胞凋亡诱导。分子动力学模拟和结合自由能分析进一步验证了CUR和BBR在双结合模式下的协同作用。本研究引入了一种新的治疗方法,通过增强药物传递和双重靶向机制,证明了curr - bbr纳米水凝胶作为EC的强大治疗方法的潜力。这一策略为解决子宫内膜癌的耐药性和改善治疗结果提供了一个有希望的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Recognition
Journal of Molecular Recognition 生物-生化与分子生物学
CiteScore
4.60
自引率
3.70%
发文量
68
审稿时长
2.7 months
期刊介绍: Journal of Molecular Recognition (JMR) publishes original research papers and reviews describing substantial advances in our understanding of molecular recognition phenomena in life sciences, covering all aspects from biochemistry, molecular biology, medicine, and biophysics. The research may employ experimental, theoretical and/or computational approaches. The focus of the journal is on recognition phenomena involving biomolecules and their biological / biochemical partners rather than on the recognition of metal ions or inorganic compounds. Molecular recognition involves non-covalent specific interactions between two or more biological molecules, molecular aggregates, cellular modules or organelles, as exemplified by receptor-ligand, antigen-antibody, nucleic acid-protein, sugar-lectin, to mention just a few of the possible interactions. The journal invites manuscripts that aim to achieve a complete description of molecular recognition mechanisms between well-characterized biomolecules in terms of structure, dynamics and biological activity. Such studies may help the future development of new drugs and vaccines, although the experimental testing of new drugs and vaccines falls outside the scope of the journal. Manuscripts that describe the application of standard approaches and techniques to design or model new molecular entities or to describe interactions between biomolecules, but do not provide new insights into molecular recognition processes will not be considered. Similarly, manuscripts involving biomolecules uncharacterized at the sequence level (e.g. calf thymus DNA) will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信