Jang Ho Kim, Seyoung Kim, Yongjae Lee, Woo Chang Kim, Frank J. Fabozzi
{"title":"Enhancing mean–variance portfolio optimization through GANs-based anomaly detection","authors":"Jang Ho Kim, Seyoung Kim, Yongjae Lee, Woo Chang Kim, Frank J. Fabozzi","doi":"10.1007/s10479-024-06293-x","DOIUrl":null,"url":null,"abstract":"<div><p>Mean–variance optimization, introduced by Markowitz, is a foundational theory and methodology in finance and optimization, significantly influencing investment management practices. This study enhances mean–variance optimization by integrating machine learning-based anomaly detection, specifically using GANs (generative adversarial networks), to identify anomaly levels in the stock market. We demonstrate the utility of GANs in detecting market anomalies and incorporating this information into portfolio optimization using robust methods such as shrinkage estimators and the Gerber statistic. Empirical analysis confirms that portfolios optimized with anomaly scores outperform those using conventional portfolio optimization. This study highlights the potential of advanced data-driven techniques to improve risk management and portfolio performance.</p></div>","PeriodicalId":8215,"journal":{"name":"Annals of Operations Research","volume":"346 1","pages":"217 - 244"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Operations Research","FirstCategoryId":"91","ListUrlMain":"https://link.springer.com/article/10.1007/s10479-024-06293-x","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Mean–variance optimization, introduced by Markowitz, is a foundational theory and methodology in finance and optimization, significantly influencing investment management practices. This study enhances mean–variance optimization by integrating machine learning-based anomaly detection, specifically using GANs (generative adversarial networks), to identify anomaly levels in the stock market. We demonstrate the utility of GANs in detecting market anomalies and incorporating this information into portfolio optimization using robust methods such as shrinkage estimators and the Gerber statistic. Empirical analysis confirms that portfolios optimized with anomaly scores outperform those using conventional portfolio optimization. This study highlights the potential of advanced data-driven techniques to improve risk management and portfolio performance.
期刊介绍:
The Annals of Operations Research publishes peer-reviewed original articles dealing with key aspects of operations research, including theory, practice, and computation. The journal publishes full-length research articles, short notes, expositions and surveys, reports on computational studies, and case studies that present new and innovative practical applications.
In addition to regular issues, the journal publishes periodic special volumes that focus on defined fields of operations research, ranging from the highly theoretical to the algorithmic and the applied. These volumes have one or more Guest Editors who are responsible for collecting the papers and overseeing the refereeing process.