Application of an intelligent hybrid global optimization (IHGO) algorithm for enhanced seismic analysis in masonry-infilled RC frames

Q2 Engineering
Ahmad S. Alfraihat
{"title":"Application of an intelligent hybrid global optimization (IHGO) algorithm for enhanced seismic analysis in masonry-infilled RC frames","authors":"Ahmad S. Alfraihat","doi":"10.1007/s42107-024-01237-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces the Intelligent Hybrid Global Optimization (IHGO) algorithm to improve the predictive accuracy of neural network models for estimating the fundamental period of vibration in masonry-infilled reinforced concrete (RC) frame structures. Using a dataset of 4,026 entries, which includes critical structural parameters such as the number of storeys (ranging from 2 to 15), span length (3–8 m), opening ratio (0–50%), and masonry wall stiffness (up to 10<sup>5</sup> kN/m), the IHGO algorithm optimizes neural network hyperparameters. The IHGO-optimized neural network outperforms baseline models, achieving an R<sup>2</sup> value of 0.92, a Mean Absolute Error (MAE) of 0.012 s, and a Root Mean Square Error (RMSE) of 0.017 s, compared to 0.85 R<sup>2</sup>, 0.018 MAE, and 0.026 RMSE for the standard neural network. The optimization balances exploration and exploitation, enhancing precision and revealing complex nonlinear relationships between structural features and seismic behavior. The study demonstrates the critical role of accurate period estimation in seismic design, supporting better assessments of structural vulnerabilities and compliance with safety standards. This work highlights the efficacy of hybrid optimization in structural engineering and suggests future research on adaptive tuning and broader seismic applications.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"26 3","pages":"1115 - 1127"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-024-01237-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces the Intelligent Hybrid Global Optimization (IHGO) algorithm to improve the predictive accuracy of neural network models for estimating the fundamental period of vibration in masonry-infilled reinforced concrete (RC) frame structures. Using a dataset of 4,026 entries, which includes critical structural parameters such as the number of storeys (ranging from 2 to 15), span length (3–8 m), opening ratio (0–50%), and masonry wall stiffness (up to 105 kN/m), the IHGO algorithm optimizes neural network hyperparameters. The IHGO-optimized neural network outperforms baseline models, achieving an R2 value of 0.92, a Mean Absolute Error (MAE) of 0.012 s, and a Root Mean Square Error (RMSE) of 0.017 s, compared to 0.85 R2, 0.018 MAE, and 0.026 RMSE for the standard neural network. The optimization balances exploration and exploitation, enhancing precision and revealing complex nonlinear relationships between structural features and seismic behavior. The study demonstrates the critical role of accurate period estimation in seismic design, supporting better assessments of structural vulnerabilities and compliance with safety standards. This work highlights the efficacy of hybrid optimization in structural engineering and suggests future research on adaptive tuning and broader seismic applications.

智能混合全局优化(IHGO)算法在混凝土砌体框架增强地震分析中的应用
引入智能混合全局优化(IHGO)算法,提高神经网络模型对混凝土框架结构基本振动周期的预测精度。使用包含4,026个条目的数据集,其中包括关键结构参数,如层数(从2到15),跨度长度(3-8米),开口比(0-50%)和砌体墙刚度(高达105 kN/m), IHGO算法优化神经网络超参数。ihgo优化的神经网络优于基线模型,R2为0.92,平均绝对误差(MAE)为0.012 s,均方根误差(RMSE)为0.017 s,而标准神经网络的R2为0.85,平均绝对误差(MAE)为0.018,均方根误差(RMSE)为0.026。优化平衡了勘探和开发,提高了精度,揭示了结构特征与地震行为之间复杂的非线性关系。该研究表明,准确的周期估计在抗震设计中的关键作用,支持更好地评估结构脆弱性和符合安全标准。这项工作突出了混合优化在结构工程中的有效性,并为自适应调谐和更广泛的地震应用的未来研究提供了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asian Journal of Civil Engineering
Asian Journal of Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
2.70
自引率
0.00%
发文量
121
期刊介绍: The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt.  Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate:  a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信