Enhancing Markowitz's portfolio selection paradigm with machine learning

IF 4.4 3区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Marcos López de Prado, Joseph Simonian, Francesco A. Fabozzi, Frank J. Fabozzi
{"title":"Enhancing Markowitz's portfolio selection paradigm with machine learning","authors":"Marcos López de Prado,&nbsp;Joseph Simonian,&nbsp;Francesco A. Fabozzi,&nbsp;Frank J. Fabozzi","doi":"10.1007/s10479-024-06257-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we describe the integration of machine learning (ML) techniques into the framework of Markowitz's portfolio selection and show how they can help advance the robust mathematical strategies necessary for modern financial markets. By combining traditional econometrics with cutting-edge ML methodologies, we show how to enhance portfolio management processes including alpha generation, risk management, and optimization of risk metrics like conditional value at risk. ML's capacity to handle vast and complex datasets allows for more dynamic and informed decision-making in portfolio construction. Moreover, we discuss the practical applications of these techniques in real-world portfolio management, highlighting both the potential enhancements and the challenges faced by portfolio managers in implementing ML strategies.</p></div>","PeriodicalId":8215,"journal":{"name":"Annals of Operations Research","volume":"346 1","pages":"319 - 340"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Operations Research","FirstCategoryId":"91","ListUrlMain":"https://link.springer.com/article/10.1007/s10479-024-06257-1","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we describe the integration of machine learning (ML) techniques into the framework of Markowitz's portfolio selection and show how they can help advance the robust mathematical strategies necessary for modern financial markets. By combining traditional econometrics with cutting-edge ML methodologies, we show how to enhance portfolio management processes including alpha generation, risk management, and optimization of risk metrics like conditional value at risk. ML's capacity to handle vast and complex datasets allows for more dynamic and informed decision-making in portfolio construction. Moreover, we discuss the practical applications of these techniques in real-world portfolio management, highlighting both the potential enhancements and the challenges faced by portfolio managers in implementing ML strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Operations Research
Annals of Operations Research 管理科学-运筹学与管理科学
CiteScore
7.90
自引率
16.70%
发文量
596
审稿时长
8.4 months
期刊介绍: The Annals of Operations Research publishes peer-reviewed original articles dealing with key aspects of operations research, including theory, practice, and computation. The journal publishes full-length research articles, short notes, expositions and surveys, reports on computational studies, and case studies that present new and innovative practical applications. In addition to regular issues, the journal publishes periodic special volumes that focus on defined fields of operations research, ranging from the highly theoretical to the algorithmic and the applied. These volumes have one or more Guest Editors who are responsible for collecting the papers and overseeing the refereeing process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信