Narges Nazari, Ahmad Rajaei, Hossein Mirzaee Moghaddam
{"title":"Comparative Effects of Basil Seed and Cress Seed Gums on Stability of Flaxseed Oil Pickering Emulsion and Functional Kiwifruit Bar Characteristics","authors":"Narges Nazari, Ahmad Rajaei, Hossein Mirzaee Moghaddam","doi":"10.1007/s11483-025-09947-w","DOIUrl":null,"url":null,"abstract":"<div><p>Encapsulation techniques, particularly Pickering emulsions stabilized by polysaccharide-protein complexes, offer a promising approach for enhancing the protection and functionality of flaxseed oil (FSO) in food applications. This study explores the stabilization of FSO-in-water emulsions using zein protein (Z) combined with either basil seed gum (BSG) or cress seed gum (CSG). SEM revealed that the Z-BSG and Z-CSG complexes formed spherical particles with smooth surfaces, though Z-BSG particles were significantly larger (2354 nm) compared to Z-CSG particles (892.7 nm). The emulsions were assessed for stability, rheological behavior, and droplet size. Emulsions containing 20% FSO stabilized by Z-BSG demonstrated superior stability and increased viscosity relative to those stabilized by Z-CSG. Subsequently, these FSO-loaded Pickering emulsions (PE) were incorporated into functional kiwifruit bars, and their physico-mechanical and sensory attributes were analyzed. Kiwifruit bars containing Z-BSG-PE displayed minimal changes in color compared to those with Z-CSG-PE. Additionally, bars with Z-BSG-PE exhibited higher adhesiveness and chewiness. Samples containing 0.2% and 0.5% Z-BSG-PE were rated the highest in overall acceptability, indicating that BSG provided better sensory properties than CSG. These findings underscore the potential of BSG to outperform CSG in stabilizing Pickering emulsions and enhancing the quality of functional food products such as kiwifruit bars.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-025-09947-w","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Encapsulation techniques, particularly Pickering emulsions stabilized by polysaccharide-protein complexes, offer a promising approach for enhancing the protection and functionality of flaxseed oil (FSO) in food applications. This study explores the stabilization of FSO-in-water emulsions using zein protein (Z) combined with either basil seed gum (BSG) or cress seed gum (CSG). SEM revealed that the Z-BSG and Z-CSG complexes formed spherical particles with smooth surfaces, though Z-BSG particles were significantly larger (2354 nm) compared to Z-CSG particles (892.7 nm). The emulsions were assessed for stability, rheological behavior, and droplet size. Emulsions containing 20% FSO stabilized by Z-BSG demonstrated superior stability and increased viscosity relative to those stabilized by Z-CSG. Subsequently, these FSO-loaded Pickering emulsions (PE) were incorporated into functional kiwifruit bars, and their physico-mechanical and sensory attributes were analyzed. Kiwifruit bars containing Z-BSG-PE displayed minimal changes in color compared to those with Z-CSG-PE. Additionally, bars with Z-BSG-PE exhibited higher adhesiveness and chewiness. Samples containing 0.2% and 0.5% Z-BSG-PE were rated the highest in overall acceptability, indicating that BSG provided better sensory properties than CSG. These findings underscore the potential of BSG to outperform CSG in stabilizing Pickering emulsions and enhancing the quality of functional food products such as kiwifruit bars.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.