Modelling bush encroachment dynamics using Intensity Analysis and the Cellular Automata model

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Ntuthuko Prosperous Mncwabe, John Odindi, Trylee Nyasha Matongera, Onisimo Mutanga
{"title":"Modelling bush encroachment dynamics using Intensity Analysis and the Cellular Automata model","authors":"Ntuthuko Prosperous Mncwabe,&nbsp;John Odindi,&nbsp;Trylee Nyasha Matongera,&nbsp;Onisimo Mutanga","doi":"10.1007/s10661-025-13808-x","DOIUrl":null,"url":null,"abstract":"<div><p>Bush encroachment is a globally recognized phenomenon linked to adverse effects, including the degradation of grasslands and loss in biodiversity, thereby challenging the conservation of keystone and flagship species, the recreational value of landscapes and local livelihoods. Therefore, a comprehensive analysis of bush encroachment is essential to gain insights into its past, present and future encroachment, as well as the severity of transitions. Using RapidEye and PlanetScope satellite imagery, this study adopted Intensity Analysis to examine past and current bush encroachment trends for the periods 2009–2014, 2014–2019 and 2019–2023, while the Cellular Automata (CA) model was used to project future encroachment trends for 2028 and 2033 within a protected area. The results indicated a continuous increase in bush encroachment within the study area. Analysis of land cover intensities shows an intensive change in the research area’s land cover in the first period (2009–2014) compared to subsequent periods. In the first two periods (i.e. 2009–2014 and 2014–2019), woody vegetation gains were more pronounced at the expense of grasslands. However, during the 2019–2023 period, woody vegetation gains were less intensive to grasslands. Moreover, throughout the study period, most grassland gains occurred in bare areas, whilst the primary cause of grassland losses was bush encroachment. The projection of future encroachment trends indicates a continued increase in woody vegetation over the next decade. The results also indicate that bush encroachment is projected to expand by 5.50 and 6.67% in 2028 and 2033, respectively. These findings highlight the urgent need to assess and enhance management schemes within the study area. Gaining critical insights into bush encroachment progression trends and transition intensities can help prioritise landscape management efforts and support decision-making for the restoration of grasslands.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10661-025-13808-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13808-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bush encroachment is a globally recognized phenomenon linked to adverse effects, including the degradation of grasslands and loss in biodiversity, thereby challenging the conservation of keystone and flagship species, the recreational value of landscapes and local livelihoods. Therefore, a comprehensive analysis of bush encroachment is essential to gain insights into its past, present and future encroachment, as well as the severity of transitions. Using RapidEye and PlanetScope satellite imagery, this study adopted Intensity Analysis to examine past and current bush encroachment trends for the periods 2009–2014, 2014–2019 and 2019–2023, while the Cellular Automata (CA) model was used to project future encroachment trends for 2028 and 2033 within a protected area. The results indicated a continuous increase in bush encroachment within the study area. Analysis of land cover intensities shows an intensive change in the research area’s land cover in the first period (2009–2014) compared to subsequent periods. In the first two periods (i.e. 2009–2014 and 2014–2019), woody vegetation gains were more pronounced at the expense of grasslands. However, during the 2019–2023 period, woody vegetation gains were less intensive to grasslands. Moreover, throughout the study period, most grassland gains occurred in bare areas, whilst the primary cause of grassland losses was bush encroachment. The projection of future encroachment trends indicates a continued increase in woody vegetation over the next decade. The results also indicate that bush encroachment is projected to expand by 5.50 and 6.67% in 2028 and 2033, respectively. These findings highlight the urgent need to assess and enhance management schemes within the study area. Gaining critical insights into bush encroachment progression trends and transition intensities can help prioritise landscape management efforts and support decision-making for the restoration of grasslands.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信