Potential-driven sulfate coordinated active configuration for electrochemical C–H bond activation†

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Jui-Hsien Chen , You-Chiuan Chu , Tong Lin , Cheng-Han Tso , Guan-Bo Wang , Chia-Shuo Hsu , Hao Ming Chen , Hsiao-Chien Chen
{"title":"Potential-driven sulfate coordinated active configuration for electrochemical C–H bond activation†","authors":"Jui-Hsien Chen ,&nbsp;You-Chiuan Chu ,&nbsp;Tong Lin ,&nbsp;Cheng-Han Tso ,&nbsp;Guan-Bo Wang ,&nbsp;Chia-Shuo Hsu ,&nbsp;Hao Ming Chen ,&nbsp;Hsiao-Chien Chen","doi":"10.1039/d4cy01548g","DOIUrl":null,"url":null,"abstract":"<div><div>Direct oxidation of methane (CH<sub>4</sub>) to methyl bisulfate (MBS) is a promising method to realize natural gas valorization and greenhouse gas emission mitigation. By integrating electrochemical methane oxidation with sulfuric acid-protected methane oxidation, problems hindering the practical use of direct methane oxidation processes such as low conversion rate and low selectivity caused by product overoxidation can be resolved. Here, we investigate the potential-dependent electrochemical methane oxidation behavior of a heterogeneous vanadium phosphate nanosheet catalyst in sulfuric acid solution for direct methane oxidation. This system achieves a maximum methane to MBS conversion current density of 92.66 μA cm<sup>−2</sup> at the optimum anodic potential (2.9 V <em>vs.</em> Ag/AgCl reference electrode, 7 bar methane pressure), which is superior to the class of electrocatalytic heterogeneous materials for MBS production. <em>In situ</em> X-ray absorption spectroscopy investigating the dynamic chemical features of vanadium atoms reveals the potential-driven formation of a metal-sulfate active site configuration, which is a crucial observation that supports the occurrence of the electrochemical sulfate radical-induced methane oxidation mechanism. Our research provides a general understanding of the sulfuric acid-protected electrochemical methane oxidation reaction mechanism on a heterogeneous surface and states the relevance of <em>in situ</em> experiments to capture the relevant catalyst transformation behaviors that occurred during reaction conditions that provide new insights into the catalytic system's mechanism for future material engineering and computational screenings.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"15 6","pages":"Pages 1972-1982"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475325000772","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Direct oxidation of methane (CH4) to methyl bisulfate (MBS) is a promising method to realize natural gas valorization and greenhouse gas emission mitigation. By integrating electrochemical methane oxidation with sulfuric acid-protected methane oxidation, problems hindering the practical use of direct methane oxidation processes such as low conversion rate and low selectivity caused by product overoxidation can be resolved. Here, we investigate the potential-dependent electrochemical methane oxidation behavior of a heterogeneous vanadium phosphate nanosheet catalyst in sulfuric acid solution for direct methane oxidation. This system achieves a maximum methane to MBS conversion current density of 92.66 μA cm−2 at the optimum anodic potential (2.9 V vs. Ag/AgCl reference electrode, 7 bar methane pressure), which is superior to the class of electrocatalytic heterogeneous materials for MBS production. In situ X-ray absorption spectroscopy investigating the dynamic chemical features of vanadium atoms reveals the potential-driven formation of a metal-sulfate active site configuration, which is a crucial observation that supports the occurrence of the electrochemical sulfate radical-induced methane oxidation mechanism. Our research provides a general understanding of the sulfuric acid-protected electrochemical methane oxidation reaction mechanism on a heterogeneous surface and states the relevance of in situ experiments to capture the relevant catalyst transformation behaviors that occurred during reaction conditions that provide new insights into the catalytic system's mechanism for future material engineering and computational screenings.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信