Recent progress in understanding the role of graphene oxide, TiO2 and graphene oxide–TiO2 nanocomposites as multidisciplinary photocatalysts in energy and environmental applications

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Ayush Badoni , Sahil Thakur , Narayanasamy Vijayan , Hendrik Christoffel Swart , Mikhael Bechelany , Zhengsen Chen , Shuhui Sun , Qiran Cai , Ying Chen , Jai Prakash
{"title":"Recent progress in understanding the role of graphene oxide, TiO2 and graphene oxide–TiO2 nanocomposites as multidisciplinary photocatalysts in energy and environmental applications","authors":"Ayush Badoni ,&nbsp;Sahil Thakur ,&nbsp;Narayanasamy Vijayan ,&nbsp;Hendrik Christoffel Swart ,&nbsp;Mikhael Bechelany ,&nbsp;Zhengsen Chen ,&nbsp;Shuhui Sun ,&nbsp;Qiran Cai ,&nbsp;Ying Chen ,&nbsp;Jai Prakash","doi":"10.1039/d4cy01334d","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid industrial advancement globally has led to critical energy shortages and environmental pollution, prompting researchers to develop simple and efficient solutions. Emerging 2D nanomaterials as sole photocatalysts and their heterostructures with traditional photocatalysts not only have boosted photocatalytic efficiency but also provided multifunctionality to their potential applications. The present review details the recent developments in graphene oxide (GO) nanomaterials and their heterostructures with metal oxide photocatalysts (particularly GO/TiO<sub>2</sub>, which is the most studied nanocomposite photocatalyst system) for their potential multidisciplinary photocatalysis applications in the fields of energy and environment. Particularly, the focus is on understanding the role of GO as an emerging sole and multidisciplinary photocatalyst as well as its role in boosting the photocatalytic efficiency of traditional metal oxide photocatalysts. This review explores the fundamental photocatalytic mechanisms of GO and the synthesis of GO/TiO<sub>2</sub> nanocomposites, with emphasis on their multifunctional photocatalytic applications in topics of current interest, including photocatalytic H<sub>2</sub> production, CO<sub>2</sub> photoreduction, and photodegradation of nano-/micro-plastics and other pollutants of emerging concern (<em>i.e.</em>, pesticides, pharmaceutical, personal care products, and pathogens/viruses), which have rarely been reviewed in the past few years. In addition, their structural and morphological (0–3D) investigations, their surface chemistry, the stability/recyclability of their nanostructures and their potential use of direct/natural sunlight for sustainable development along with their computational aspects and toxicity towards human health and the environment have been highlighted. Finally, various challenges, in view of GO emerging as a sole promising photocatalyst and its nanocomposites, are discussed, along with their potential to provide sustainable solutions to energy shortage, clean energy and environmental pollution.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"15 6","pages":"Pages 1702-1770"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475325000814","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid industrial advancement globally has led to critical energy shortages and environmental pollution, prompting researchers to develop simple and efficient solutions. Emerging 2D nanomaterials as sole photocatalysts and their heterostructures with traditional photocatalysts not only have boosted photocatalytic efficiency but also provided multifunctionality to their potential applications. The present review details the recent developments in graphene oxide (GO) nanomaterials and their heterostructures with metal oxide photocatalysts (particularly GO/TiO2, which is the most studied nanocomposite photocatalyst system) for their potential multidisciplinary photocatalysis applications in the fields of energy and environment. Particularly, the focus is on understanding the role of GO as an emerging sole and multidisciplinary photocatalyst as well as its role in boosting the photocatalytic efficiency of traditional metal oxide photocatalysts. This review explores the fundamental photocatalytic mechanisms of GO and the synthesis of GO/TiO2 nanocomposites, with emphasis on their multifunctional photocatalytic applications in topics of current interest, including photocatalytic H2 production, CO2 photoreduction, and photodegradation of nano-/micro-plastics and other pollutants of emerging concern (i.e., pesticides, pharmaceutical, personal care products, and pathogens/viruses), which have rarely been reviewed in the past few years. In addition, their structural and morphological (0–3D) investigations, their surface chemistry, the stability/recyclability of their nanostructures and their potential use of direct/natural sunlight for sustainable development along with their computational aspects and toxicity towards human health and the environment have been highlighted. Finally, various challenges, in view of GO emerging as a sole promising photocatalyst and its nanocomposites, are discussed, along with their potential to provide sustainable solutions to energy shortage, clean energy and environmental pollution.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信