Coverage Optimization for Reliable UAV-Assisted 5G/6G Communication Systems

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Bilel Ben Saoud;Leïla Nasraoui
{"title":"Coverage Optimization for Reliable UAV-Assisted 5G/6G Communication Systems","authors":"Bilel Ben Saoud;Leïla Nasraoui","doi":"10.1109/JSYST.2025.3532232","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) play a pivotal role in 5G/6G wireless communication systems due to their deployment flexibility. This article explores optimal UAV positioning to maximize coverage in hybrid aerial–ground communication links. Exploiting a probabilistic line-of-sight (LOS) model, we examine coverage radius behavior in mixed urban and suburban environments to meet specific quality-of-service (QoS) targets. The analysis reveals that the coverage radius expands as the probability of LOS increases, which in turn increases with the UAV height. However, beyond a certain height, path loss becomes dominant, and further increases in altitude negatively impact the coverage radius. By studying the maximum coverage radius for minimum signal strength and spectral efficiency requirements, we numerically determine a configuration space of UAV altitudes and the corresponding maximum radius that satisfies the target QoS. The results illustrate a dual-regime behavior, where coverage increases with altitude up to a certain value, beyond which it declines, indicating the existence of an optimal altitude for reliability. In addition, the analysis of ground surface effects shows that flying over concrete surfaces significantly enhances coverage, offering a radius up to five times larger compared to rough, vegetated surfaces.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"19 1","pages":"65-74"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10904471/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Unmanned aerial vehicles (UAVs) play a pivotal role in 5G/6G wireless communication systems due to their deployment flexibility. This article explores optimal UAV positioning to maximize coverage in hybrid aerial–ground communication links. Exploiting a probabilistic line-of-sight (LOS) model, we examine coverage radius behavior in mixed urban and suburban environments to meet specific quality-of-service (QoS) targets. The analysis reveals that the coverage radius expands as the probability of LOS increases, which in turn increases with the UAV height. However, beyond a certain height, path loss becomes dominant, and further increases in altitude negatively impact the coverage radius. By studying the maximum coverage radius for minimum signal strength and spectral efficiency requirements, we numerically determine a configuration space of UAV altitudes and the corresponding maximum radius that satisfies the target QoS. The results illustrate a dual-regime behavior, where coverage increases with altitude up to a certain value, beyond which it declines, indicating the existence of an optimal altitude for reliability. In addition, the analysis of ground surface effects shows that flying over concrete surfaces significantly enhances coverage, offering a radius up to five times larger compared to rough, vegetated surfaces.
可靠的无人机辅助5G/6G通信系统覆盖优化
无人机(uav)由于其部署灵活性,在5G/6G无线通信系统中发挥着关键作用。本文探讨了在混合地空通信链路中最大化覆盖的最佳无人机定位。利用概率视距(LOS)模型,我们研究了城市和郊区混合环境中的覆盖半径行为,以满足特定的服务质量(QoS)目标。分析表明,覆盖半径随着失视概率的增大而增大,而失视概率又随着无人机高度的增大而增大。但超过一定高度后,路径损耗占主导地位,海拔进一步升高对覆盖半径产生负面影响。通过研究最小信号强度和频谱效率要求下的最大覆盖半径,数值确定满足目标QoS的无人机高度配置空间和相应的最大半径。结果表明,在一定的高度,覆盖率随高度的增加而增加,超过一定的高度,覆盖率就会下降,这表明存在最优的可靠性高度。此外,对地面效应的分析表明,在混凝土表面上飞行可以显著提高覆盖范围,与粗糙的植被表面相比,半径可达五倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Systems Journal
IEEE Systems Journal 工程技术-电信学
CiteScore
9.80
自引率
6.80%
发文量
572
审稿时长
4.9 months
期刊介绍: This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信