Mahmoud A. Albreem;Alaa H. Al Habbash;Ammar M. Abu-Hudrouss;M.-T. EL Astal
{"title":"A Low-Complexity Detection Framework for Signed Quadrature Spatial Modulation Based on Approximated MMSE Sparse Detectors","authors":"Mahmoud A. Albreem;Alaa H. Al Habbash;Ammar M. Abu-Hudrouss;M.-T. EL Astal","doi":"10.1109/JSYST.2024.3524880","DOIUrl":null,"url":null,"abstract":"The design of low-complexity data detection techniques for massive multiple-input multiple-output (mMIMO) systems continues to attract considerable industry and research attention due to the critical need to achieve the right tradeoff between complexity and performance, especially with the signed quadrature spatial modulation (SQSM) scheme. However, the SQSM scheme attains a high spectral efficiency and good performance but suffers from a high computational complexity with mMIMO systems. In this article, we propose an efficient low-complexity detection framework for the SQSM scheme. Sparsity detection is amalgamated in this article with minimum mean-square error (MMSE) detector by decoupling the detection of the real and imaginary vector streams. Unfortunately, the MMSE-based detector has a matrix inversion which incurs a high computational complexity. Therefore, we employed several iterative methods; i.e., conjugate gradient and Gauss–Seidel, to avoid the exact matrix inversion, and hence, the computational complexity is significantly reduced. Moreover, the proposed framework can host other iterative methods such as the JA, successive over relaxation, accelerated over relaxation, Neumann series, Newton iteration, two-parameter over relaxation, and Richardson methods. The proposed detection framework attains a significant complexity reduction with a small or insignificant deterioration in the performance.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"19 1","pages":"32-42"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10849772/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The design of low-complexity data detection techniques for massive multiple-input multiple-output (mMIMO) systems continues to attract considerable industry and research attention due to the critical need to achieve the right tradeoff between complexity and performance, especially with the signed quadrature spatial modulation (SQSM) scheme. However, the SQSM scheme attains a high spectral efficiency and good performance but suffers from a high computational complexity with mMIMO systems. In this article, we propose an efficient low-complexity detection framework for the SQSM scheme. Sparsity detection is amalgamated in this article with minimum mean-square error (MMSE) detector by decoupling the detection of the real and imaginary vector streams. Unfortunately, the MMSE-based detector has a matrix inversion which incurs a high computational complexity. Therefore, we employed several iterative methods; i.e., conjugate gradient and Gauss–Seidel, to avoid the exact matrix inversion, and hence, the computational complexity is significantly reduced. Moreover, the proposed framework can host other iterative methods such as the JA, successive over relaxation, accelerated over relaxation, Neumann series, Newton iteration, two-parameter over relaxation, and Richardson methods. The proposed detection framework attains a significant complexity reduction with a small or insignificant deterioration in the performance.
期刊介绍:
This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.