Realizing high thermoelectric performance through the synergistic control of intrinsic conduction and enhanced phonon scattering in Cu-doped Bi0.5Sb1.5Te3 alloys

IF 5.8 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Suk-min Yoon , Babu Madavali , Chul-hee Lee , Rathinam Vasudevan , Hyoung Seop Kim , Soon-Jik Hong
{"title":"Realizing high thermoelectric performance through the synergistic control of intrinsic conduction and enhanced phonon scattering in Cu-doped Bi0.5Sb1.5Te3 alloys","authors":"Suk-min Yoon ,&nbsp;Babu Madavali ,&nbsp;Chul-hee Lee ,&nbsp;Rathinam Vasudevan ,&nbsp;Hyoung Seop Kim ,&nbsp;Soon-Jik Hong","doi":"10.1016/j.jeurceramsoc.2025.117360","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the use of water-atomization for the mass production of (BiSb)<sub>2</sub>Te<sub>3</sub> powders (∼2Kg/min) with enhanced thermoelectric performance, aimed at large-scale commercial applications. For the first time, excess Cu (0.05 wt%) was incorporated into <em>p</em>-type Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> (BST) alloy using a novel low-impact energy (LIE) process with varying intervals. The BST powders exhibit irregular shapes and bulk crystallites with an R<span><math><mover><mrow><mn>3</mn></mrow><mo>̅</mo></mover></math></span>m rhombohedral structure. The reduction in grain size and the formation of Cu-rich regions at the BST matrix effectively enhanced the phonon scattering in LIE-Cu<sub>0.05</sub>BST alloys. Consequently, the optimized LIE 6h-Cu<sub>0.05</sub>BST exhibited a reduced lattice thermal conductivity of 0.6 W/m. K. at 400 K, along with an improved figure of merit (<em>zT</em>) of 1.2. Furthermore, the spark plasma heat treatment (SPHT) of SPHT-Cu<sub>0.05</sub>BST enhanced electrical conductivity by creating textured grain orientations raising the maximum room-temperature power factor to 4.5<span><math><mo>×</mo></math></span>10<sup>−3</sup> W/m. K<sup>2</sup>, achieving a peak <em>zT</em> of 1.29 at 400 K.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 10","pages":"Article 117360"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221925001803","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the use of water-atomization for the mass production of (BiSb)2Te3 powders (∼2Kg/min) with enhanced thermoelectric performance, aimed at large-scale commercial applications. For the first time, excess Cu (0.05 wt%) was incorporated into p-type Bi0.5Sb1.5Te3 (BST) alloy using a novel low-impact energy (LIE) process with varying intervals. The BST powders exhibit irregular shapes and bulk crystallites with an R3̅m rhombohedral structure. The reduction in grain size and the formation of Cu-rich regions at the BST matrix effectively enhanced the phonon scattering in LIE-Cu0.05BST alloys. Consequently, the optimized LIE 6h-Cu0.05BST exhibited a reduced lattice thermal conductivity of 0.6 W/m. K. at 400 K, along with an improved figure of merit (zT) of 1.2. Furthermore, the spark plasma heat treatment (SPHT) of SPHT-Cu0.05BST enhanced electrical conductivity by creating textured grain orientations raising the maximum room-temperature power factor to 4.5×10−3 W/m. K2, achieving a peak zT of 1.29 at 400 K.
通过协同控制掺铜 Bi0.5Sb1.5Te3 合金的本征传导和增强声子散射实现高热电性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The European Ceramic Society
Journal of The European Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
10.70
自引率
12.30%
发文量
863
审稿时长
35 days
期刊介绍: The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信