Fair Laplace: A unified framework for fair spectral clustering

IF 6.9 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zhijing Yang , Hui Zhang , Chunming Yang , Bo Li , Xujian Zhao , Yin Long
{"title":"Fair Laplace: A unified framework for fair spectral clustering","authors":"Zhijing Yang ,&nbsp;Hui Zhang ,&nbsp;Chunming Yang ,&nbsp;Bo Li ,&nbsp;Xujian Zhao ,&nbsp;Yin Long","doi":"10.1016/j.ipm.2025.104124","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in fair spectral clustering algorithms have improved the fair distribution of resources during the clustering process, effectively addressing inequalities that affect certain individuals or subgroups. However, there are still drawbacks such as fewer fairness definitions and poorer fairness performance. In this paper, we provide a framework of fair spectral clustering algorithms based on fair Laplacian matrices and instantiate three fair spectral clustering algorithms under three different definitions, which include group fairness and individual fairness, as well as another type of fairness problem that exists in spectral clustering, which we define as scale fairness. We have comprehensively evaluated all three algorithms under the Fair Spectral Clustering framework, and the experimental results show that the framework has a significant effect on improving the fairness of spectral clustering. We conducted a comprehensive evaluation of three algorithms under the fair spectral clustering framework, where the largest dataset has 35,325 nodes, and we also chose to compare them with the most influential (state-of-the-art) algorithms under different fairness definitions. The experimental results show that the framework has a significant effect on improving the fairness of spectral clustering, where the maximum fairness performance is improved to 68.5%.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 4","pages":"Article 104124"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325000664","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in fair spectral clustering algorithms have improved the fair distribution of resources during the clustering process, effectively addressing inequalities that affect certain individuals or subgroups. However, there are still drawbacks such as fewer fairness definitions and poorer fairness performance. In this paper, we provide a framework of fair spectral clustering algorithms based on fair Laplacian matrices and instantiate three fair spectral clustering algorithms under three different definitions, which include group fairness and individual fairness, as well as another type of fairness problem that exists in spectral clustering, which we define as scale fairness. We have comprehensively evaluated all three algorithms under the Fair Spectral Clustering framework, and the experimental results show that the framework has a significant effect on improving the fairness of spectral clustering. We conducted a comprehensive evaluation of three algorithms under the fair spectral clustering framework, where the largest dataset has 35,325 nodes, and we also chose to compare them with the most influential (state-of-the-art) algorithms under different fairness definitions. The experimental results show that the framework has a significant effect on improving the fairness of spectral clustering, where the maximum fairness performance is improved to 68.5%.
公平拉普拉斯:公平谱聚类的统一框架
公平谱聚类算法的最新进展提高了聚类过程中资源的公平分配,有效地解决了影响某些个体或子群体的不平等问题。然而,仍然存在一些缺点,例如较少的公平定义和较差的公平性能。本文提出了一种基于公平拉普拉斯矩阵的公平谱聚类算法框架,并实例化了三种不同定义下的公平谱聚类算法,包括群体公平和个体公平,以及谱聚类中存在的另一类公平问题,我们将其定义为尺度公平。我们在公平光谱聚类框架下对三种算法进行了综合评价,实验结果表明该框架对提高光谱聚类的公平性有显著的效果。我们对公平光谱聚类框架下的三种算法进行了综合评估,其中最大的数据集有35,325个节点,我们还选择将它们与不同公平定义下最具影响力(最先进)的算法进行比较。实验结果表明,该框架在提高光谱聚类公平性方面效果显著,最大公平性性能提高到68.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信