{"title":"On 1-planar graphs with bounded cop-number","authors":"Prosenjit Bose , Jean-Lou De Carufel , Anil Maheshwari , Karthik Murali","doi":"10.1016/j.tcs.2025.115160","DOIUrl":null,"url":null,"abstract":"<div><div>Cops and Robbers is a type of pursuit-evasion game played on a graph where a set of cops try to capture a single robber. The cops first choose their initial vertex positions, and later the robber chooses a vertex. The cops and robbers make their moves in alternate turns: in the cops' turn, every cop can either choose to move to an adjacent vertex or stay on the same vertex, and likewise the robber in his turn. If the cops can capture the robber in a finite number of rounds, the cops win, otherwise the robber wins. The cop-number of a graph is the minimum number of cops required to catch a robber in the graph. It has long been known that graphs embedded on surfaces (such as planar graphs and toroidal graphs) have a small cop-number. Recently, Durocher et al. <span><span>[21]</span></span> investigated the problem of cop-number for the class of 1-planar graphs, which are graphs that can be embedded in the plane such that each edge is crossed at most once. They showed that unlike planar graphs which require just three cops, 1-planar graphs have an unbounded cop-number. On the positive side, they showed that maximal 1-planar graphs require only three cops by crucially using the fact that the endpoints of every crossing in an embedded maximal 1-planar graph induce a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>. In this paper, we show that the cop-number remains bounded even under the relaxed condition that the endpoints induce at least three edges. More precisely, let an ×-crossing of an embedded 1-planar graph be a crossing whose endpoints induce a matching; i.e., there is no edge connecting the endpoints apart from the crossing edges themselves. We show that any 1-planar graph that can be embedded without ×-crossings has cop-number at most 21. Moreover, any 1-planar graph that can be embedded with at most <em>γ</em> ×-crossings has cop-number at most <span><math><mi>γ</mi><mo>+</mo><mn>21</mn></math></span>.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1037 ","pages":"Article 115160"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525000982","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Cops and Robbers is a type of pursuit-evasion game played on a graph where a set of cops try to capture a single robber. The cops first choose their initial vertex positions, and later the robber chooses a vertex. The cops and robbers make their moves in alternate turns: in the cops' turn, every cop can either choose to move to an adjacent vertex or stay on the same vertex, and likewise the robber in his turn. If the cops can capture the robber in a finite number of rounds, the cops win, otherwise the robber wins. The cop-number of a graph is the minimum number of cops required to catch a robber in the graph. It has long been known that graphs embedded on surfaces (such as planar graphs and toroidal graphs) have a small cop-number. Recently, Durocher et al. [21] investigated the problem of cop-number for the class of 1-planar graphs, which are graphs that can be embedded in the plane such that each edge is crossed at most once. They showed that unlike planar graphs which require just three cops, 1-planar graphs have an unbounded cop-number. On the positive side, they showed that maximal 1-planar graphs require only three cops by crucially using the fact that the endpoints of every crossing in an embedded maximal 1-planar graph induce a . In this paper, we show that the cop-number remains bounded even under the relaxed condition that the endpoints induce at least three edges. More precisely, let an ×-crossing of an embedded 1-planar graph be a crossing whose endpoints induce a matching; i.e., there is no edge connecting the endpoints apart from the crossing edges themselves. We show that any 1-planar graph that can be embedded without ×-crossings has cop-number at most 21. Moreover, any 1-planar graph that can be embedded with at most γ ×-crossings has cop-number at most .
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.