Oswin Aichholzer , Anna Brötzner , Daniel Perz , Patrick Schnider
{"title":"Flips in odd matchings","authors":"Oswin Aichholzer , Anna Brötzner , Daniel Perz , Patrick Schnider","doi":"10.1016/j.comgeo.2025.102184","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>P</mi></math></span> be a set of <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></math></span> points in the plane in general position. We define the graph <span><math><mi>G</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> whose vertex set is the set of all plane matchings on <span><math><mi>P</mi></math></span> with exactly <em>m</em> edges. Two vertices in <span><math><mi>G</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> are connected if the two corresponding matchings have <span><math><mi>m</mi><mo>−</mo><mn>1</mn></math></span> edges in common. In this work we show that <span><math><mi>G</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> is connected and give an upper bound of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> on its diameter. Moreover, we present a lower bound of <span><math><mi>n</mi><mo>−</mo><mn>2</mn></math></span> and an upper bound of <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> for the diameter of <span><math><mi>G</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> for <span><math><mi>P</mi></math></span> in convex position.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"129 ","pages":"Article 102184"},"PeriodicalIF":0.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772125000227","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a set of points in the plane in general position. We define the graph whose vertex set is the set of all plane matchings on with exactly m edges. Two vertices in are connected if the two corresponding matchings have edges in common. In this work we show that is connected and give an upper bound of on its diameter. Moreover, we present a lower bound of and an upper bound of for the diameter of for in convex position.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.