Insulitis and aging: Immune cell dynamics in Langerhans islets

IF 10.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Julia Jelleschitz , Sophie Heider , Richard Kehm , Patricia Baumgarten , Christiane Ott , Vanessa Schnell , Tilman Grune , Annika Höhn
{"title":"Insulitis and aging: Immune cell dynamics in Langerhans islets","authors":"Julia Jelleschitz ,&nbsp;Sophie Heider ,&nbsp;Richard Kehm ,&nbsp;Patricia Baumgarten ,&nbsp;Christiane Ott ,&nbsp;Vanessa Schnell ,&nbsp;Tilman Grune ,&nbsp;Annika Höhn","doi":"10.1016/j.redox.2025.103587","DOIUrl":null,"url":null,"abstract":"<div><div>With increasing age, the risk for age-related type-2-diabetes also increases due to impaired glucose tolerance and insulin secretion. This disease process may be influenced by various factors, including immune cell triggered inflammation and fibrosis. Although immune cells are a necessary component of islets, little is known about immune cell accumulation, immune cell subtype shifts and subsequent influence on glucose metabolism in healthy aging. However, this is critical for understanding the mechanisms that influence β-cell health. Therefore, we studied young and old male C57BL/6J mice, focusing on immune cell composition, patterns of accumulation, and the presence of fibrosis within the pancreatic islets.</div><div>Our findings demonstrate that insulitis occurs in healthy aged mice without immediate development of a diabetic phenotype. Aged islets exhibited an increase in leukocytes and a shift in immune cell composition. While insulitis typically involves excessive immune cell accumulation, we observed a moderate increase in macrophages and T-cells during aging, which may support β-cell proliferation via cytokine secretion. In fact, aged mice in our study showed an increase in β-cell mass as well as a partially higher insulin secretory capacity, which compensated for the loss of β-cell functionality in insulitic islets and led to improved glucose tolerance. Furthermore, fibrosis which is normally triggered by immune cells, increased with age but appears to reach a steady state, emphasizing the importance of counter-regulatory mechanisms and immune system regulation.</div><div>Our results suggest, that immune cell subtypes change with age and that non-pathological accumulation of immune-cells may regulate glucose metabolism through secretion of cytokines.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"82 ","pages":"Article 103587"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725001004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With increasing age, the risk for age-related type-2-diabetes also increases due to impaired glucose tolerance and insulin secretion. This disease process may be influenced by various factors, including immune cell triggered inflammation and fibrosis. Although immune cells are a necessary component of islets, little is known about immune cell accumulation, immune cell subtype shifts and subsequent influence on glucose metabolism in healthy aging. However, this is critical for understanding the mechanisms that influence β-cell health. Therefore, we studied young and old male C57BL/6J mice, focusing on immune cell composition, patterns of accumulation, and the presence of fibrosis within the pancreatic islets.
Our findings demonstrate that insulitis occurs in healthy aged mice without immediate development of a diabetic phenotype. Aged islets exhibited an increase in leukocytes and a shift in immune cell composition. While insulitis typically involves excessive immune cell accumulation, we observed a moderate increase in macrophages and T-cells during aging, which may support β-cell proliferation via cytokine secretion. In fact, aged mice in our study showed an increase in β-cell mass as well as a partially higher insulin secretory capacity, which compensated for the loss of β-cell functionality in insulitic islets and led to improved glucose tolerance. Furthermore, fibrosis which is normally triggered by immune cells, increased with age but appears to reach a steady state, emphasizing the importance of counter-regulatory mechanisms and immune system regulation.
Our results suggest, that immune cell subtypes change with age and that non-pathological accumulation of immune-cells may regulate glucose metabolism through secretion of cytokines.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信