Enhancing security in IIoT: RFID authentication protocol for edge computing and blockchain-enabled supply chain

Vikash Kumar , Santosh Kumar Das
{"title":"Enhancing security in IIoT: RFID authentication protocol for edge computing and blockchain-enabled supply chain","authors":"Vikash Kumar ,&nbsp;Santosh Kumar Das","doi":"10.1016/j.csa.2025.100087","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses security challenges, especially in the authentication mechanism of Industrial Internet of Things (IIoT)-enabled supply chain systems by proposing an enhanced Radio Frequency Identification (RFID) authentication protocol. The current system faces significant security risks due to increased connectivity and data exchange within supply chain networks. The proposed protocol integrates edge computing and blockchain to ensure secure, efficient mutual authentication between RFID tags and supply chain nodes. By utilizing the real-time processing capabilities of edge computing and the decentralization and immutability of blockchain, the protocol enhances the security of data transmitted in the system. The proposed protocol utilizes lightweight cryptographic functions optimized for resource-constrained edge devices, ensuring secure authentication and data transmission without compromising scalability or efficiency. Permissioned blockchain technology further strengthens trust and transparency in the supply chain by providing a decentralized, tamper-resistant ledger. The protocol employs cryptographic techniques such as a cryptographically secure one-way hash function, random number generation function, and circular shift operations to ensure data integrity and confidentiality, achieving mutual authentication, forward secrecy, and resistance to cryptographic attacks. Formal security analysis of the proposed authentication protocol is performed using the Real-Or-Random (ROR) model. The results demonstrate that the protocol offers superior trade-offs in term of security, computational cost, and communication efficiency compared to existing authentication protocols in this field. Simulation of the protocol is performed using Automated Validation of Internet Security Protocols and Applications (AVISPA) tools. Its lightweight design makes it suitable for real-world application in resource-constrained IIoT environments.</div></div>","PeriodicalId":100351,"journal":{"name":"Cyber Security and Applications","volume":"3 ","pages":"Article 100087"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber Security and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772918425000049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses security challenges, especially in the authentication mechanism of Industrial Internet of Things (IIoT)-enabled supply chain systems by proposing an enhanced Radio Frequency Identification (RFID) authentication protocol. The current system faces significant security risks due to increased connectivity and data exchange within supply chain networks. The proposed protocol integrates edge computing and blockchain to ensure secure, efficient mutual authentication between RFID tags and supply chain nodes. By utilizing the real-time processing capabilities of edge computing and the decentralization and immutability of blockchain, the protocol enhances the security of data transmitted in the system. The proposed protocol utilizes lightweight cryptographic functions optimized for resource-constrained edge devices, ensuring secure authentication and data transmission without compromising scalability or efficiency. Permissioned blockchain technology further strengthens trust and transparency in the supply chain by providing a decentralized, tamper-resistant ledger. The protocol employs cryptographic techniques such as a cryptographically secure one-way hash function, random number generation function, and circular shift operations to ensure data integrity and confidentiality, achieving mutual authentication, forward secrecy, and resistance to cryptographic attacks. Formal security analysis of the proposed authentication protocol is performed using the Real-Or-Random (ROR) model. The results demonstrate that the protocol offers superior trade-offs in term of security, computational cost, and communication efficiency compared to existing authentication protocols in this field. Simulation of the protocol is performed using Automated Validation of Internet Security Protocols and Applications (AVISPA) tools. Its lightweight design makes it suitable for real-world application in resource-constrained IIoT environments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信