UniSAL: Unified Semi-supervised Active Learning for histopathological image classification

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lanfeng Zhong , Kun Qian , Xin Liao , Zongyao Huang , Yang Liu , Shaoting Zhang , Guotai Wang
{"title":"UniSAL: Unified Semi-supervised Active Learning for histopathological image classification","authors":"Lanfeng Zhong ,&nbsp;Kun Qian ,&nbsp;Xin Liao ,&nbsp;Zongyao Huang ,&nbsp;Yang Liu ,&nbsp;Shaoting Zhang ,&nbsp;Guotai Wang","doi":"10.1016/j.media.2025.103542","DOIUrl":null,"url":null,"abstract":"<div><div>Histopathological image classification using deep learning is crucial for accurate and efficient cancer diagnosis. However, annotating a large amount of histopathological images for training is costly and time-consuming, leading to a scarcity of available labeled data for training deep neural networks. To reduce human efforts and improve efficiency for annotation, we propose a Unified Semi-supervised Active Learning framework (UniSAL) that effectively selects informative and representative samples for annotation. First, unlike most existing active learning methods that only train from labeled samples in each round, dual-view high-confidence pseudo training is proposed to utilize both labeled and unlabeled images to train a model for selecting query samples, where two networks operating on different augmented versions of an input image provide diverse pseudo labels for each other, and pseudo label-guided class-wise contrastive learning is introduced to obtain better feature representations for effective sample selection. Second, based on the trained model at each round, we design novel uncertain and representative sample selection strategy. It contains a Disagreement-aware Uncertainty Selector (DUS) to select informative uncertain samples with inconsistent predictions between the two networks, and a Compact Selector (CS) to remove redundancy of selected samples. We extensively evaluate our method on three public pathological image classification datasets, i.e., CRC5000, Chaoyang and CRC100K datasets, and the results demonstrate that our UniSAL significantly surpasses several state-of-the-art active learning methods, and reduces the annotation cost to around 10% to achieve a performance comparable to full annotation. Code is available at <span><span>https://github.com/HiLab-git/UniSAL</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"102 ","pages":"Article 103542"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525000891","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Histopathological image classification using deep learning is crucial for accurate and efficient cancer diagnosis. However, annotating a large amount of histopathological images for training is costly and time-consuming, leading to a scarcity of available labeled data for training deep neural networks. To reduce human efforts and improve efficiency for annotation, we propose a Unified Semi-supervised Active Learning framework (UniSAL) that effectively selects informative and representative samples for annotation. First, unlike most existing active learning methods that only train from labeled samples in each round, dual-view high-confidence pseudo training is proposed to utilize both labeled and unlabeled images to train a model for selecting query samples, where two networks operating on different augmented versions of an input image provide diverse pseudo labels for each other, and pseudo label-guided class-wise contrastive learning is introduced to obtain better feature representations for effective sample selection. Second, based on the trained model at each round, we design novel uncertain and representative sample selection strategy. It contains a Disagreement-aware Uncertainty Selector (DUS) to select informative uncertain samples with inconsistent predictions between the two networks, and a Compact Selector (CS) to remove redundancy of selected samples. We extensively evaluate our method on three public pathological image classification datasets, i.e., CRC5000, Chaoyang and CRC100K datasets, and the results demonstrate that our UniSAL significantly surpasses several state-of-the-art active learning methods, and reduces the annotation cost to around 10% to achieve a performance comparable to full annotation. Code is available at https://github.com/HiLab-git/UniSAL.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信