Complete decomposition of symmetric tensors in linear time and polylogarithmic precision

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Pascal Koiran , Subhayan Saha
{"title":"Complete decomposition of symmetric tensors in linear time and polylogarithmic precision","authors":"Pascal Koiran ,&nbsp;Subhayan Saha","doi":"10.1016/j.tcs.2025.115159","DOIUrl":null,"url":null,"abstract":"<div><div>We study symmetric tensor decompositions, i.e., decompositions of the form <span><math><mi>T</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><msubsup><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⊗</mo><mn>3</mn></mrow></msubsup></math></span> where <em>T</em> is a symmetric tensor of order 3 and <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In order to obtain efficient decomposition algorithms, it is necessary to require additional properties from the <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. In this paper we assume that the <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> are linearly independent. This implies <span><math><mi>r</mi><mo>≤</mo><mi>n</mi></math></span>, i.e., the decomposition of <em>T</em> is <em>undercomplete</em>. We will moreover assume that <span><math><mi>r</mi><mo>=</mo><mi>n</mi></math></span> (we plan to extend this work to the case <span><math><mi>r</mi><mo>&lt;</mo><mi>n</mi></math></span> in a forthcoming paper).</div><div>We give a randomized algorithm for the following problem: given <em>T</em>, an accuracy parameter <em>ε</em>, and an upper bound <em>B</em> on the <em>condition number</em> of the tensor, output vectors <span><math><msubsup><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> such that <span><math><mo>|</mo><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><msubsup><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>|</mo><mo>|</mo><mo>≤</mo><mi>ε</mi></math></span> (up to permutation and multiplication by phases) with high probability. The main novel features of our algorithm are:<ul><li><span>•</span><span><div>We provide the first algorithm for this problem that works in the computation model of finite arithmetic and requires only poly-logarithmic (in <span><math><mi>n</mi><mo>,</mo><mi>B</mi></math></span> and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ε</mi></mrow></mfrac></math></span>) many bits of precision.</div></span></li><li><span>•</span><span><div>Moreover, this is also the first algorithm that runs in linear time in the size of the input tensor. It requires <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> arithmetic operations for all accuracy parameters <span><math><mi>ε</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mtext>poly</mtext><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mfrac></math></span>.</div></span></li></ul></div><div>In order to obtain these results, we rely on a mix of techniques from algorithm design and algorithm analysis. The algorithm is a modified version of simultaneous diagonalisation algorithm for symmetric tensors. In terms of algorithm design, our main contribution lies in replacing the usual appeal to resolution of a linear system of equations <span><span>[30]</span></span>, <span><span>[7]</span></span> by a matrix trace-based method. The analysis of the algorithm depends on the following components:<ul><li><span>1.</span><span><div>We use the fast and numerically stable diagonalisation algorithm from <span><span>[9]</span></span>. We provide better guarantees for the approximate solution returned by the diagonalisation algorithm when the input matrix is diagonalisable.</div></span></li><li><span>2.</span><span><div>We show strong anti-concentration bounds for certain families of polynomials when the randomness is sampled uniformly from a discrete grid.</div></span></li></ul></div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1037 ","pages":"Article 115159"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525000970","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We study symmetric tensor decompositions, i.e., decompositions of the form T=i=1rui3 where T is a symmetric tensor of order 3 and uiCn. In order to obtain efficient decomposition algorithms, it is necessary to require additional properties from the ui. In this paper we assume that the ui are linearly independent. This implies rn, i.e., the decomposition of T is undercomplete. We will moreover assume that r=n (we plan to extend this work to the case r<n in a forthcoming paper).
We give a randomized algorithm for the following problem: given T, an accuracy parameter ε, and an upper bound B on the condition number of the tensor, output vectors ui such that ||uiui||ε (up to permutation and multiplication by phases) with high probability. The main novel features of our algorithm are:
  • We provide the first algorithm for this problem that works in the computation model of finite arithmetic and requires only poly-logarithmic (in n,B and 1ε) many bits of precision.
  • Moreover, this is also the first algorithm that runs in linear time in the size of the input tensor. It requires O(n3) arithmetic operations for all accuracy parameters ε=1poly(n).
In order to obtain these results, we rely on a mix of techniques from algorithm design and algorithm analysis. The algorithm is a modified version of simultaneous diagonalisation algorithm for symmetric tensors. In terms of algorithm design, our main contribution lies in replacing the usual appeal to resolution of a linear system of equations [30], [7] by a matrix trace-based method. The analysis of the algorithm depends on the following components:
  • 1.
    We use the fast and numerically stable diagonalisation algorithm from [9]. We provide better guarantees for the approximate solution returned by the diagonalisation algorithm when the input matrix is diagonalisable.
  • 2.
    We show strong anti-concentration bounds for certain families of polynomials when the randomness is sampled uniformly from a discrete grid.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信