Xiaoqi Liang, Marni Torkel, Yue Cao, Jean Yee Hwa Yang
{"title":"Multi-task benchmarking of spatially resolved gene expression simulation models","authors":"Xiaoqi Liang, Marni Torkel, Yue Cao, Jean Yee Hwa Yang","doi":"10.1186/s13059-025-03505-w","DOIUrl":null,"url":null,"abstract":"Computational methods for spatially resolved transcriptomics (SRT) are often developed and assessed using simulated data. The effectiveness of these evaluations relies on the ability of simulation methods to accurately reflect experimental data. However, a systematic evaluation framework for spatial simulators is currently lacking. Here, we present SpatialSimBench, a comprehensive evaluation framework that assesses 13 simulation methods using ten distinct STR datasets. We introduce simAdaptor, a tool that extends single-cell simulators by incorporating spatial variables, enabling them to simulate spatial data. SimAdaptor ensures SpatialSimBench is backwards compatible, facilitating direct comparisons between spatially aware simulators and existing non-spatial single-cell simulators through the adaption. Using SpatialSimBench, we demonstrate the feasibility of leveraging existing single-cell simulators for SRT data and highlight performance differences among methods. Additionally, we evaluate the simulation methods based on a total of 35 metrics across data property estimation, various downstream analyses, and scalability. In total, we generated 4550 results from 13 simulation methods, ten spatial datasets, and 35 metrics. Our findings reveal that model estimation can be influenced by distribution assumptions and dataset characteristics. In summary, our evaluation framework provides guidelines for selecting appropriate methods for specific scenarios and informs future method development.\n","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"89 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03505-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Computational methods for spatially resolved transcriptomics (SRT) are often developed and assessed using simulated data. The effectiveness of these evaluations relies on the ability of simulation methods to accurately reflect experimental data. However, a systematic evaluation framework for spatial simulators is currently lacking. Here, we present SpatialSimBench, a comprehensive evaluation framework that assesses 13 simulation methods using ten distinct STR datasets. We introduce simAdaptor, a tool that extends single-cell simulators by incorporating spatial variables, enabling them to simulate spatial data. SimAdaptor ensures SpatialSimBench is backwards compatible, facilitating direct comparisons between spatially aware simulators and existing non-spatial single-cell simulators through the adaption. Using SpatialSimBench, we demonstrate the feasibility of leveraging existing single-cell simulators for SRT data and highlight performance differences among methods. Additionally, we evaluate the simulation methods based on a total of 35 metrics across data property estimation, various downstream analyses, and scalability. In total, we generated 4550 results from 13 simulation methods, ten spatial datasets, and 35 metrics. Our findings reveal that model estimation can be influenced by distribution assumptions and dataset characteristics. In summary, our evaluation framework provides guidelines for selecting appropriate methods for specific scenarios and informs future method development.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.