Alex J. Goodell, Simon N. Chu, Dara Rouholiman, Larry F. Chu
{"title":"Large language model agents can use tools to perform clinical calculations","authors":"Alex J. Goodell, Simon N. Chu, Dara Rouholiman, Larry F. Chu","doi":"10.1038/s41746-025-01475-8","DOIUrl":null,"url":null,"abstract":"<p>Large language models (LLMs) can answer expert-level questions in medicine but are prone to hallucinations and arithmetic errors. Early evidence suggests LLMs cannot reliably perform clinical calculations, limiting their potential integration into clinical workflows. We evaluated ChatGPT’s performance across 48 medical calculation tasks, finding incorrect responses in one-third of trials (<i>n</i> = 212). We then assessed three forms of agentic augmentation: retrieval-augmented generation, a code interpreter tool, and a set of task-specific calculation tools (OpenMedCalc) across 10,000 trials. Models with access to task-specific tools showed the greatest improvement, with LLaMa and GPT-based models demonstrating a 5.5-fold (88% vs 16%) and 13-fold (64% vs 4.8%) reduction in incorrect responses, respectively, compared to the unimproved models. Our findings suggest that integration of machine-readable, task-specific tools may help overcome LLMs’ limitations in medical calculations.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"18 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01475-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Large language models (LLMs) can answer expert-level questions in medicine but are prone to hallucinations and arithmetic errors. Early evidence suggests LLMs cannot reliably perform clinical calculations, limiting their potential integration into clinical workflows. We evaluated ChatGPT’s performance across 48 medical calculation tasks, finding incorrect responses in one-third of trials (n = 212). We then assessed three forms of agentic augmentation: retrieval-augmented generation, a code interpreter tool, and a set of task-specific calculation tools (OpenMedCalc) across 10,000 trials. Models with access to task-specific tools showed the greatest improvement, with LLaMa and GPT-based models demonstrating a 5.5-fold (88% vs 16%) and 13-fold (64% vs 4.8%) reduction in incorrect responses, respectively, compared to the unimproved models. Our findings suggest that integration of machine-readable, task-specific tools may help overcome LLMs’ limitations in medical calculations.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.