Morphological Transitions and Chain Conformations in AB2 Miktoarm Star Block Copolymers: A Molecular Dynamics Study

IF 5.1 1区 化学 Q1 POLYMER SCIENCE
Zerihun G. Workineh, Farzad Toiserkani, Joshua Lequieu, Giuseppe Pellicane, Mesfin Tsige
{"title":"Morphological Transitions and Chain Conformations in AB2 Miktoarm Star Block Copolymers: A Molecular Dynamics Study","authors":"Zerihun G. Workineh, Farzad Toiserkani, Joshua Lequieu, Giuseppe Pellicane, Mesfin Tsige","doi":"10.1021/acs.macromol.5c00029","DOIUrl":null,"url":null,"abstract":"This study investigates the role of chain architecture and block asymmetry on the morphology of <i>AB</i><sub>2</sub> miktoarm star block copolymers (<i>AB</i><sub>2</sub> BCPs) in the strongly segregated regime using molecular dynamics simulations. Notably, the cylindrical morphology in <i>AB</i><sub>2</sub> BCPs persists across a broad compositional range, extending close to <i>f</i><sub><i>A</i></sub> ≈ 0.5, in agreement with both theoretical and experimental findings. The lamellar morphology observed up to <i>f</i><sub><i>A</i></sub> ≈ 0.8 matches predictions; however, beyond this point, <i>AB</i><sub>2</sub> BCPs continue to exhibit lamellar structures (disk-like micelles), deviating from the expected transitions to cylindrical or spherical morphologies. This behavior, corroborated by dissipative particle dynamics simulations, is attributed to the B arms’ preference to occupying the outer regions of curved interfaces, which hinders the formation of cylindrical or spherical morphologies. Furthermore, domain spacing results exhibit remarkable agreement with strong-stretching theory (SST) across different morphologies, reinforcing the predictive power of SST. Finally, shape parameter analysis, including metrics like asphericity and acylindricity, underscores the significant impact of chain architecture on these morphological transitions. These findings provide molecular-level insights into how chain architecture and block asymmetry dictate phase behavior and morphological stability in linear and miktoarm BCPs.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"4 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.5c00029","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the role of chain architecture and block asymmetry on the morphology of AB2 miktoarm star block copolymers (AB2 BCPs) in the strongly segregated regime using molecular dynamics simulations. Notably, the cylindrical morphology in AB2 BCPs persists across a broad compositional range, extending close to fA ≈ 0.5, in agreement with both theoretical and experimental findings. The lamellar morphology observed up to fA ≈ 0.8 matches predictions; however, beyond this point, AB2 BCPs continue to exhibit lamellar structures (disk-like micelles), deviating from the expected transitions to cylindrical or spherical morphologies. This behavior, corroborated by dissipative particle dynamics simulations, is attributed to the B arms’ preference to occupying the outer regions of curved interfaces, which hinders the formation of cylindrical or spherical morphologies. Furthermore, domain spacing results exhibit remarkable agreement with strong-stretching theory (SST) across different morphologies, reinforcing the predictive power of SST. Finally, shape parameter analysis, including metrics like asphericity and acylindricity, underscores the significant impact of chain architecture on these morphological transitions. These findings provide molecular-level insights into how chain architecture and block asymmetry dictate phase behavior and morphological stability in linear and miktoarm BCPs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信