Rustem Khasanov, Riccardo Vocaturo, Oleg Janson, Andreas Koitzsch, Ritu Gupta, Debarchan Das, Nicola P. M. Casati, Maia G. Vergniory, Jeroen van den Brink, Eteri Svanidze
{"title":"Influence of pressure on the properties of the multigap type-I superconductor BeAu","authors":"Rustem Khasanov, Riccardo Vocaturo, Oleg Janson, Andreas Koitzsch, Ritu Gupta, Debarchan Das, Nicola P. M. Casati, Maia G. Vergniory, Jeroen van den Brink, Eteri Svanidze","doi":"10.1103/physrevb.111.104507","DOIUrl":null,"url":null,"abstract":"We report on studies of the superconducting and normal-state properties of the noncentrosymmetric superconductor BeAu under hydrostatic pressure conditions. The room-temperature equation of state (EOS) reveals the values of the bulk modulus (B</a:mi>0</a:mn></a:msub></a:math>) and its first derivative (<b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:msubsup><b:mi>B</b:mi><b:mn>0</b:mn><b:mo>′</b:mo></b:msubsup></b:math>) at ambient pressure to be <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:msub><c:mi>B</c:mi><c:mn>0</c:mn></c:msub><c:mo>≃</c:mo><c:mn>133</c:mn><c:mspace width=\"0.28em\"/><c:mi>GPa</c:mi></c:mrow></c:math> and <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\"><e:mrow><e:msubsup><e:mi>B</e:mi><e:mn>0</e:mn><e:mo>′</e:mo></e:msubsup><e:mo>≃</e:mo><e:mn>30</e:mn></e:mrow></e:math>, respectively. Up to the highest pressures studied (<f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\"><f:mrow><f:mi>p</f:mi><f:mo>≃</f:mo><f:mn>2.2</f:mn><f:mspace width=\"0.28em\"/><f:mi>GPa</f:mi></f:mrow></f:math>), BeAu remains a multigap type-I superconductor. The analysis of <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\"><h:mrow><h:msub><h:mi>B</h:mi><h:mi mathvariant=\"normal\">c</h:mi></h:msub><h:mrow><h:mo>(</h:mo><h:mi>T</h:mi><h:mo>,</h:mo><h:mi>p</h:mi><h:mo>)</h:mo></h:mrow></h:mrow></h:math> data within the self-consistent two-gap approach suggests the presence of two superconducting energy gaps, with the gap-to-<j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\"><j:msub><j:mi>T</j:mi><j:mi mathvariant=\"normal\">c</j:mi></j:msub></j:math> ratios <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\"><l:mrow><l:msub><l:mi mathvariant=\"normal\">Δ</l:mi><l:mn>1</l:mn></l:msub><l:mo>/</l:mo><l:msub><l:mi>k</l:mi><l:mi mathvariant=\"normal\">B</l:mi></l:msub><l:msub><l:mi>T</l:mi><l:mi mathvariant=\"normal\">c</l:mi></l:msub><l:mo>∼</l:mo><l:mn>2.3</l:mn></l:mrow></l:math> and <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\"><p:mrow><p:msub><p:mi mathvariant=\"normal\">Δ</p:mi><p:mn>2</p:mn></p:msub><p:mo>/</p:mo><p:msub><p:mi>k</p:mi><p:mi mathvariant=\"normal\">B</p:mi></p:msub><p:msub><p:mi>T</p:mi><p:mi mathvariant=\"normal\">c</p:mi></p:msub><p:mo>∼</p:mo><p:mn>1.1</p:mn></p:mrow></p:math> for the larger and smaller gaps, respectively [<t:math xmlns:t=\"http://www.w3.org/1998/Math/MathML\"><t:mrow><t:mi mathvariant=\"normal\">Δ</t:mi><t:mo>=</t:mo><t:mi mathvariant=\"normal\">Δ</t:mi><t:mo>(</t:mo><t:mn>0</t:mn><t:mo>)</t:mo></t:mrow></t:math> is the zero-temperature value of the gap and <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\"><w:msub><w:mi>k</w:mi><w:mi mathvariant=\"normal\">B</w:mi></w:msub></w:math> is the Boltzmann constant]. With increasing pressure, <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\"><y:mrow><y:msub><y:mi mathvariant=\"normal\">Δ</y:mi><y:mn>1</y:mn></y:msub><y:mo>/</y:mo><y:msub><y:mi>k</y:mi><y:mi mathvariant=\"normal\">B</y:mi></y:msub><y:msub><y:mi>T</y:mi><y:mi mathvariant=\"normal\">c</y:mi></y:msub></y:mrow></y:math> increases while <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\"><cb:mrow><cb:msub><cb:mi mathvariant=\"normal\">Δ</cb:mi><cb:mn>2</cb:mn></cb:msub><cb:mo>/</cb:mo><cb:msub><cb:mi>k</cb:mi><cb:mi mathvariant=\"normal\">B</cb:mi></cb:msub><cb:msub><cb:mi>T</cb:mi><cb:mi mathvariant=\"normal\">c</cb:mi></cb:msub></cb:mrow></cb:math> decreases, suggesting that pressure enhances (weakens) the coupling strength between the superconducting carriers within the bands where the larger (smaller) superconducting energy gap has opened. The superconducting transition temperature <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\"><gb:msub><gb:mi>T</gb:mi><gb:mi mathvariant=\"normal\">c</gb:mi></gb:msub></gb:math>, the zero-temperature values of the superconducting gaps <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\"><ib:msub><ib:mi mathvariant=\"normal\">Δ</ib:mi><ib:mn>1</ib:mn></ib:msub></ib:math> and <kb:math xmlns:kb=\"http://www.w3.org/1998/Math/MathML\"><kb:msub><kb:mi mathvariant=\"normal\">Δ</kb:mi><kb:mn>2</kb:mn></kb:msub></kb:math>, and the zero-temperature value of the thermodynamic critical field <mb:math xmlns:mb=\"http://www.w3.org/1998/Math/MathML\"><mb:mrow><mb:msub><mb:mi>B</mb:mi><mb:mi mathvariant=\"normal\">c</mb:mi></mb:msub><mb:mrow><mb:mo>(</mb:mo><mb:mn>0</mb:mn><mb:mo>)</mb:mo></mb:mrow></mb:mrow></mb:math> decrease with increasing pressure, with the rates of <ob:math xmlns:ob=\"http://www.w3.org/1998/Math/MathML\"><ob:mrow><ob:mi mathvariant=\"normal\">d</ob:mi><ob:msub><ob:mi>T</ob:mi><ob:mi mathvariant=\"normal\">c</ob:mi></ob:msub><ob:mo>/</ob:mo><ob:mi mathvariant=\"normal\">d</ob:mi><ob:mi>p</ob:mi><ob:mo>≃</ob:mo><ob:mo>−</ob:mo><ob:mn>0.197</ob:mn><ob:mspace width=\"0.28em\"/><ob:mi mathvariant=\"normal\">K</ob:mi><ob:mo>/</ob:mo><ob:mi>GPa</ob:mi></ob:mrow><ob:mo>,</ob:mo><ob:mo> </ob:mo><ob:mrow><ob:mi mathvariant=\"normal\">d</ob:mi><ob:msub><ob:mi mathvariant=\"normal\">Δ</ob:mi><ob:mn>1</ob:mn></ob:msub><ob:mo>/</ob:mo><ob:mi mathvariant=\"normal\">d</ob:mi><ob:mi>p</ob:mi><ob:mo>≃</ob:mo><ob:mo>−</ob:mo><ob:mn>0.034</ob:mn><ob:mspace width=\"0.28em\"/><ob:mi>meV</ob:mi><ob:mo>/</ob:mo><ob:mi>GPa</ob:mi></ob:mrow><ob:mo>,</ob:mo><ob:mo> </ob:mo><ob:mrow><ob:mi mathvariant=\"normal\">d</ob:mi><ob:msub><ob:mi mathvariant=\"normal\">Δ</ob:mi><ob:mn>2</ob:mn></ob:msub><ob:mo>/</ob:mo><ob:mi mathvariant=\"normal\">d</ob:mi><ob:mi>p</ob:mi><ob:mo>≃</ob:mo><ob:mo>−</ob:mo><ob:mn>0.029</ob:mn><ob:mspace width=\"0.28em\"/><ob:mi>meV</ob:mi><ob:mo>/</ob:mo><ob:mi>GPa</ob:mi></ob:mrow></ob:math>, and <cc:math xmlns:cc=\"http://www.w3.org/1998/Math/MathML\"><cc:mrow><cc:mi mathvariant=\"normal\">d</cc:mi><cc:msub><cc:mi>B</cc:mi><cc:mi mathvariant=\"normal\">c</cc:mi></cc:msub><cc:mrow><cc:mo>(</cc:mo><cc:mn>0</cc:mn><cc:mo>)</cc:mo></cc:mrow><cc:mo>/</cc:mo><cc:mi mathvariant=\"normal\">d</cc:mi><cc:mi>p</cc:mi><cc:mo>≃</cc:mo><cc:mo>−</cc:mo><cc:mn>2.65</cc:mn><cc:mspace width=\"0.28em\"/><cc:mi>mT</cc:mi><cc:mo>/</cc:mo><cc:mi>GPa</cc:mi></cc:mrow></cc:math>, respectively. The measured <hc:math xmlns:hc=\"http://www.w3.org/1998/Math/MathML\"><hc:mrow><hc:msub><hc:mi>B</hc:mi><hc:mi mathvariant=\"normal\">c</hc:mi></hc:msub><hc:mrow><hc:mo>(</hc:mo><hc:mn>0</hc:mn><hc:mo>)</hc:mo></hc:mrow></hc:mrow></hc:math> values plotted as a function of <jc:math xmlns:jc=\"http://www.w3.org/1998/Math/MathML\"><jc:msub><jc:mi>T</jc:mi><jc:mi mathvariant=\"normal\">c</jc:mi></jc:msub></jc:math> follow an empirical scaling relation established for conventional type-I superconductors. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"124 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.104507","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We report on studies of the superconducting and normal-state properties of the noncentrosymmetric superconductor BeAu under hydrostatic pressure conditions. The room-temperature equation of state (EOS) reveals the values of the bulk modulus (B0) and its first derivative (B0′) at ambient pressure to be B0≃133GPa and B0′≃30, respectively. Up to the highest pressures studied (p≃2.2GPa), BeAu remains a multigap type-I superconductor. The analysis of Bc(T,p) data within the self-consistent two-gap approach suggests the presence of two superconducting energy gaps, with the gap-to-Tc ratios Δ1/kBTc∼2.3 and Δ2/kBTc∼1.1 for the larger and smaller gaps, respectively [Δ=Δ(0) is the zero-temperature value of the gap and kB is the Boltzmann constant]. With increasing pressure, Δ1/kBTc increases while Δ2/kBTc decreases, suggesting that pressure enhances (weakens) the coupling strength between the superconducting carriers within the bands where the larger (smaller) superconducting energy gap has opened. The superconducting transition temperature Tc, the zero-temperature values of the superconducting gaps Δ1 and Δ2, and the zero-temperature value of the thermodynamic critical field Bc(0) decrease with increasing pressure, with the rates of dTc/dp≃−0.197K/GPa,dΔ1/dp≃−0.034meV/GPa,dΔ2/dp≃−0.029meV/GPa, and dBc(0)/dp≃−2.65mT/GPa, respectively. The measured Bc(0) values plotted as a function of Tc follow an empirical scaling relation established for conventional type-I superconductors. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter