UAV Operations Safety Assessment: A Systematic Literature Review

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Omid Asghari, Naghmeh Ivaki, Henrique Madeira
{"title":"UAV Operations Safety Assessment: A Systematic Literature Review","authors":"Omid Asghari, Naghmeh Ivaki, Henrique Madeira","doi":"10.1145/3723871","DOIUrl":null,"url":null,"abstract":"The significant increase in urban UAVs, due to their benefits and commercial potential, will increase drone density and collision risks. To manage this, Unmanned Aircraft Systems Traffic Management (UTM), European implementation of UTM (U-space), and Air Traffic Management (ATM) are being developed for safe integration with other air traffic. Nonetheless, thorough safety assessments remain essential for ensuring UAV operation safety. In this study, we conducted a two-phase systematic literature review. First, we analyzed existing reviews on UAV operation safety assessments. Second, we examined primary studies with the goal of identifying i) safety assessment approaches, ii) employed methods/techniques, iii) defined and utilized safety metrics, iv) common tools/simulators, and v) stages of safety assessment addressed by each technique in the reviewed studies. As a result, we categorized safety assessment approaches into five groups: 1) Model-based, 2) Analytical-based, 3) Data-driven, 4) Experimental-based, and 5) Hybrid approaches. We found that Monte Carlo simulation and Specific Operations Risk Assessment (SORA) are the most commonly used methods for safety assessment. We identified 42 metrics and classified them into four groups: 1) Collision, 2) Performance, 3) Communication, and 4) Reliability Metrics. Additionally, we identified ten tools/simulators used for safety assessment. Finally, we observed that Stage 5 (safety risk evaluation) of the safety assessment process is the most frequently covered in the studies reviewed.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"1 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3723871","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The significant increase in urban UAVs, due to their benefits and commercial potential, will increase drone density and collision risks. To manage this, Unmanned Aircraft Systems Traffic Management (UTM), European implementation of UTM (U-space), and Air Traffic Management (ATM) are being developed for safe integration with other air traffic. Nonetheless, thorough safety assessments remain essential for ensuring UAV operation safety. In this study, we conducted a two-phase systematic literature review. First, we analyzed existing reviews on UAV operation safety assessments. Second, we examined primary studies with the goal of identifying i) safety assessment approaches, ii) employed methods/techniques, iii) defined and utilized safety metrics, iv) common tools/simulators, and v) stages of safety assessment addressed by each technique in the reviewed studies. As a result, we categorized safety assessment approaches into five groups: 1) Model-based, 2) Analytical-based, 3) Data-driven, 4) Experimental-based, and 5) Hybrid approaches. We found that Monte Carlo simulation and Specific Operations Risk Assessment (SORA) are the most commonly used methods for safety assessment. We identified 42 metrics and classified them into four groups: 1) Collision, 2) Performance, 3) Communication, and 4) Reliability Metrics. Additionally, we identified ten tools/simulators used for safety assessment. Finally, we observed that Stage 5 (safety risk evaluation) of the safety assessment process is the most frequently covered in the studies reviewed.
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信