{"title":"Radiomics with Ultrasound Radiofrequency Data for Improving Evaluation of Duchenne Muscular Dystrophy.","authors":"Dong Yan, Qiang Li, Ya-Wen Chuang, Chia-Wei Lin, Jeng-Yi Shieh, Wen-Chin Weng, Po-Hsiang Tsui","doi":"10.1007/s10278-025-01450-5","DOIUrl":null,"url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) is a rare and severe genetic neuromuscular disease, characterized by rapid progression and high mortality, highlighting the need for accurate ambulatory function assessment tools. Ultrasound imaging methods have been widely used for quantitative analysis. Radiomics, which converts medical images into data, combined with machine learning (ML), offers a promising solution. This study is aimed at utilizing radiomics to analyze different stages of data generated during B-mode image processing to evaluate the ambulatory function of DMD patients. The study included 85 participants, categorized into ambulatory and non-ambulatory groups based on their functional status. Ultrasound scans were utilized to capture backscattered radiofrequency data, which were then processed to generate envelope, normalized, and B-mode images. Radiomics analysis involved the manual segmentation of grayscale images and automatic feature extraction using specialized software, followed by feature selection using the maximal relevance and minimal redundancy method. The selected features were input into five ML algorithms, with model evaluation conducted via area under the receiver operating characteristic curve (AUROC). To ensure robustness, both leave-one-out cross-validation and repeated data splitting methods were employed. Additionally, multiple ML models were constructed and tested to assess their performance. The intensity values across all image types increased as walking ability declined, with significant differences observed between the ambulatory and non-ambulatory groups (p < 0.001). These groups exhibited similar diagnostic performance levels, with AUROC values below 0.8. However, radiofrequency (RF) images outperformed other types when radiomics was applied, notably achieving an AUROC value of 0.906. Additionally, combining multiple ML algorithms yielded a higher AUROC value of 0.912 using RF images as input. Radiomics analysis of RF data surpasses conventional B-mode imaging and other ultrasound-derived images in evaluating ambulatory function in DMD. Moreover, integrating multiple machine learning models further enhances classification performance. The proposed method in this study offers a promising framework for improving the accuracy and reliability of clinical follow-up evaluations, supporting more effective management of DMD. The code is available at https://github.com/Goldenyan/radiomicsUS .</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01450-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Duchenne muscular dystrophy (DMD) is a rare and severe genetic neuromuscular disease, characterized by rapid progression and high mortality, highlighting the need for accurate ambulatory function assessment tools. Ultrasound imaging methods have been widely used for quantitative analysis. Radiomics, which converts medical images into data, combined with machine learning (ML), offers a promising solution. This study is aimed at utilizing radiomics to analyze different stages of data generated during B-mode image processing to evaluate the ambulatory function of DMD patients. The study included 85 participants, categorized into ambulatory and non-ambulatory groups based on their functional status. Ultrasound scans were utilized to capture backscattered radiofrequency data, which were then processed to generate envelope, normalized, and B-mode images. Radiomics analysis involved the manual segmentation of grayscale images and automatic feature extraction using specialized software, followed by feature selection using the maximal relevance and minimal redundancy method. The selected features were input into five ML algorithms, with model evaluation conducted via area under the receiver operating characteristic curve (AUROC). To ensure robustness, both leave-one-out cross-validation and repeated data splitting methods were employed. Additionally, multiple ML models were constructed and tested to assess their performance. The intensity values across all image types increased as walking ability declined, with significant differences observed between the ambulatory and non-ambulatory groups (p < 0.001). These groups exhibited similar diagnostic performance levels, with AUROC values below 0.8. However, radiofrequency (RF) images outperformed other types when radiomics was applied, notably achieving an AUROC value of 0.906. Additionally, combining multiple ML algorithms yielded a higher AUROC value of 0.912 using RF images as input. Radiomics analysis of RF data surpasses conventional B-mode imaging and other ultrasound-derived images in evaluating ambulatory function in DMD. Moreover, integrating multiple machine learning models further enhances classification performance. The proposed method in this study offers a promising framework for improving the accuracy and reliability of clinical follow-up evaluations, supporting more effective management of DMD. The code is available at https://github.com/Goldenyan/radiomicsUS .