A Two-Stage Lightweight Deep Learning Framework for Mass Detection and Segmentation in Mammograms Using YOLOv5 and Depthwise SegNet.

Dimitris Manolakis, Paschalis Bizopoulos, Antonios Lalas, Konstantinos Votis
{"title":"A Two-Stage Lightweight Deep Learning Framework for Mass Detection and Segmentation in Mammograms Using YOLOv5 and Depthwise SegNet.","authors":"Dimitris Manolakis, Paschalis Bizopoulos, Antonios Lalas, Konstantinos Votis","doi":"10.1007/s10278-025-01471-0","DOIUrl":null,"url":null,"abstract":"<p><p>Ensuring strict medical data privacy standards while delivering efficient and accurate breast cancer segmentation is a critical challenge. This paper addresses this challenge by proposing a lightweight solution capable of running directly in the user's browser, ensuring that medical data never leave the user's computer. Our proposed solution consists of a two-stage model: the pre-trained nano YoloV5 variation handles the task of mass detection, while a lightweight neural network model of just 20k parameters and an inference time of 21 ms per image addresses the segmentation problem. This highly efficient model in terms of inference speed and memory consumption was created by combining well-known techniques, such as the SegNet architecture and depthwise separable convolutions. The detection model manages an mAP@50 equal to 50.3% on the CBIS-DDSM dataset and 68.2% on the INbreast dataset. Despite its size, our segmentation model produces high-performance levels on the CBIS-DDSM (81.0% IoU, 89.4% Dice) and INbreast (77.3% IoU, 87.0% Dice) dataset.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01471-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ensuring strict medical data privacy standards while delivering efficient and accurate breast cancer segmentation is a critical challenge. This paper addresses this challenge by proposing a lightweight solution capable of running directly in the user's browser, ensuring that medical data never leave the user's computer. Our proposed solution consists of a two-stage model: the pre-trained nano YoloV5 variation handles the task of mass detection, while a lightweight neural network model of just 20k parameters and an inference time of 21 ms per image addresses the segmentation problem. This highly efficient model in terms of inference speed and memory consumption was created by combining well-known techniques, such as the SegNet architecture and depthwise separable convolutions. The detection model manages an mAP@50 equal to 50.3% on the CBIS-DDSM dataset and 68.2% on the INbreast dataset. Despite its size, our segmentation model produces high-performance levels on the CBIS-DDSM (81.0% IoU, 89.4% Dice) and INbreast (77.3% IoU, 87.0% Dice) dataset.

使用 YOLOv5 和深度 SegNet 在乳房 X 线照片中进行肿块检测和分割的两阶段轻量级深度学习框架。
确保严格的医疗数据隐私标准,同时提供高效和准确的乳腺癌细分是一项关键挑战。本文提出了一种轻量级解决方案,能够直接在用户的浏览器中运行,确保医疗数据永远不会离开用户的计算机,从而解决了这一挑战。我们提出的解决方案由两阶段模型组成:预训练的纳米YoloV5变体处理质量检测任务,而轻量级神经网络模型只有20k个参数,每张图像的推理时间为21 ms,用于解决分割问题。在推理速度和内存消耗方面,这种高效的模型是通过结合众所周知的技术(如SegNet架构和深度可分离卷积)创建的。该检测模型管理的mAP@50在CBIS-DDSM数据集上为50.3%,在INbreast数据集上为68.2%。尽管它的大小,我们的分割模型在CBIS-DDSM (81.0% IoU, 89.4% Dice)和INbreast (77.3% IoU, 87.0% Dice)数据集上产生了高性能水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信