Integrating artificial intelligence in drug discovery and early drug development: a transformative approach.

IF 9.5 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Alberto Ocana, Atanasio Pandiella, Cristian Privat, Iván Bravo, Miguel Luengo-Oroz, Eitan Amir, Balazs Gyorffy
{"title":"Integrating artificial intelligence in drug discovery and early drug development: a transformative approach.","authors":"Alberto Ocana, Atanasio Pandiella, Cristian Privat, Iván Bravo, Miguel Luengo-Oroz, Eitan Amir, Balazs Gyorffy","doi":"10.1186/s40364-025-00758-2","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) can transform drug discovery and early drug development by addressing inefficiencies in traditional methods, which often face high costs, long timelines, and low success rates. In this review we provide an overview of how to integrate AI to the current drug discovery and development process, as it can enhance activities like target identification, drug discovery, and early clinical development. Through multiomics data analysis and network-based approaches, AI can help to identify novel oncogenic vulnerabilities and key therapeutic targets. AI models, such as AlphaFold, predict protein structures with high accuracy, aiding druggability assessments and structure-based drug design. AI also facilitates virtual screening and de novo drug design, creating optimized molecular structures for specific biological properties. In early clinical development, AI supports patient recruitment by analyzing electronic health records and improves trial design through predictive modeling, protocol optimization, and adaptive strategies. Innovations like synthetic control arms and digital twins can reduce logistical and ethical challenges by simulating outcomes using real-world or virtual patient data. Despite these advancements, limitations remain. AI models may be biased if trained on unrepresentative datasets, and reliance on historical or synthetic data can lead to overfitting or lack generalizability. Ethical and regulatory issues, such as data privacy, also challenge the implementation of AI. In conclusion, in this review we provide a comprehensive overview about how to integrate AI into current processes. These efforts, although they will demand collaboration between professionals, and robust data quality, have a transformative potential to accelerate drug development.</p>","PeriodicalId":54225,"journal":{"name":"Biomarker Research","volume":"13 1","pages":"45"},"PeriodicalIF":9.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909971/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarker Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40364-025-00758-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) can transform drug discovery and early drug development by addressing inefficiencies in traditional methods, which often face high costs, long timelines, and low success rates. In this review we provide an overview of how to integrate AI to the current drug discovery and development process, as it can enhance activities like target identification, drug discovery, and early clinical development. Through multiomics data analysis and network-based approaches, AI can help to identify novel oncogenic vulnerabilities and key therapeutic targets. AI models, such as AlphaFold, predict protein structures with high accuracy, aiding druggability assessments and structure-based drug design. AI also facilitates virtual screening and de novo drug design, creating optimized molecular structures for specific biological properties. In early clinical development, AI supports patient recruitment by analyzing electronic health records and improves trial design through predictive modeling, protocol optimization, and adaptive strategies. Innovations like synthetic control arms and digital twins can reduce logistical and ethical challenges by simulating outcomes using real-world or virtual patient data. Despite these advancements, limitations remain. AI models may be biased if trained on unrepresentative datasets, and reliance on historical or synthetic data can lead to overfitting or lack generalizability. Ethical and regulatory issues, such as data privacy, also challenge the implementation of AI. In conclusion, in this review we provide a comprehensive overview about how to integrate AI into current processes. These efforts, although they will demand collaboration between professionals, and robust data quality, have a transformative potential to accelerate drug development.

将人工智能整合到药物发现和早期药物开发中:一种变革性的方法。
人工智能(AI)可以通过解决传统方法的低效率问题来改变药物发现和早期药物开发,传统方法通常面临高成本、长时间和低成功率的问题。在这篇综述中,我们概述了如何将人工智能整合到当前的药物发现和开发过程中,因为它可以增强诸如目标识别、药物发现和早期临床开发等活动。通过多组学数据分析和基于网络的方法,人工智能可以帮助识别新的致癌脆弱性和关键的治疗靶点。人工智能模型,如AlphaFold,可以高精度地预测蛋白质结构,有助于药物评估和基于结构的药物设计。人工智能还促进了虚拟筛选和新药物设计,为特定生物特性创建优化的分子结构。在早期临床开发中,人工智能通过分析电子健康记录支持患者招募,并通过预测建模、方案优化和自适应策略改进试验设计。合成控制臂和数字双胞胎等创新可以通过使用现实世界或虚拟患者数据模拟结果来减少后勤和道德挑战。尽管取得了这些进步,但局限性依然存在。如果在不具代表性的数据集上训练,人工智能模型可能会有偏差,对历史或合成数据的依赖可能导致过拟合或缺乏泛化性。伦理和监管问题,如数据隐私,也对人工智能的实施提出了挑战。总之,在这篇综述中,我们提供了一个关于如何将人工智能集成到当前流程的全面概述。尽管这些努力需要专业人员之间的合作和可靠的数据质量,但它们具有加速药物开发的变革性潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomarker Research
Biomarker Research Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
15.80
自引率
1.80%
发文量
80
审稿时长
10 weeks
期刊介绍: Biomarker Research, an open-access, peer-reviewed journal, covers all aspects of biomarker investigation. It seeks to publish original discoveries, novel concepts, commentaries, and reviews across various biomedical disciplines. The field of biomarker research has progressed significantly with the rise of personalized medicine and individual health. Biomarkers play a crucial role in drug discovery and development, as well as in disease diagnosis, treatment, prognosis, and prevention, particularly in the genome era.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信