Ca2+-triggered (de)ubiquitination events in synapses.

IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Sofia Ainatzi, Svenja V Kaufmann, Ivan Silbern, Svilen V Georgiev, Sonja Lorenz, Silvio O Rizzoli, Henning Urlaub
{"title":"Ca<sup>2+</sup>-triggered (de)ubiquitination events in synapses.","authors":"Sofia Ainatzi, Svenja V Kaufmann, Ivan Silbern, Svilen V Georgiev, Sonja Lorenz, Silvio O Rizzoli, Henning Urlaub","doi":"10.1016/j.mcpro.2025.100946","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal communication relies on neurotransmitter release from synaptic vesicles (SVs), whose dynamics are controlled by Ca<sup>2+</sup>-dependent pathways, as many thoroughly studied phosphorylation cascades. However, little is known about other post-translational modifications, as ubiquitination. To address this, we analysed resting and stimulated synaptosomes (isolated synapses) by quantitative mass spectrometry. We identified more than 5,000 ubiquitination sites on ∼2,000 proteins, the majority of which participate in SV recycling processes. Several proteins showed significant changes in ubiquitination in response to Ca<sup>2+</sup> influx, with the most pronounced changes in CaMKIIα and the clathrin adaptor protein AP180. To validate this finding, we generated a CaMKIIα mutant lacking the ubiquitination target site (K291) and analysed it both in neurons and non-neuronal cells. K291 ubiquitination, close to an important site for CaMKIIα autophosphorylation (T286), influences the synaptic function of this kinase. We suggest that ubiquitination in response to synaptic activity is an important regulator of synaptic function.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100946"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.100946","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Neuronal communication relies on neurotransmitter release from synaptic vesicles (SVs), whose dynamics are controlled by Ca2+-dependent pathways, as many thoroughly studied phosphorylation cascades. However, little is known about other post-translational modifications, as ubiquitination. To address this, we analysed resting and stimulated synaptosomes (isolated synapses) by quantitative mass spectrometry. We identified more than 5,000 ubiquitination sites on ∼2,000 proteins, the majority of which participate in SV recycling processes. Several proteins showed significant changes in ubiquitination in response to Ca2+ influx, with the most pronounced changes in CaMKIIα and the clathrin adaptor protein AP180. To validate this finding, we generated a CaMKIIα mutant lacking the ubiquitination target site (K291) and analysed it both in neurons and non-neuronal cells. K291 ubiquitination, close to an important site for CaMKIIα autophosphorylation (T286), influences the synaptic function of this kinase. We suggest that ubiquitination in response to synaptic activity is an important regulator of synaptic function.

神经元的交流依赖于突触小泡(SV)释放神经递质,而突触小泡的动态受 Ca2+ 依赖性途径的控制,正如许多经过深入研究的磷酸化级联一样。然而,人们对其他翻译后修饰(如泛素化)知之甚少。为了解决这个问题,我们通过定量质谱分析了静息和受刺激的突触体(分离的突触)。我们在 2000 多个蛋白质上发现了 5000 多个泛素化位点,其中大部分参与了 SV 循环过程。在 Ca2+ 流入时,一些蛋白质的泛素化发生了显著变化,其中以 CaMKIIα 和凝集素适配蛋白 AP180 的变化最为明显。为了验证这一发现,我们生成了一个缺乏泛素化目标位点(K291)的CaMKIIα突变体,并在神经元和非神经元细胞中对其进行了分析。K291 泛素化靠近 CaMKIIα 自身磷酸化的一个重要位点(T286),影响了该激酶的突触功能。我们认为,针对突触活动的泛素化是突触功能的一个重要调节因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular & Cellular Proteomics
Molecular & Cellular Proteomics 生物-生化研究方法
CiteScore
11.50
自引率
4.30%
发文量
131
审稿时长
84 days
期刊介绍: The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action. The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data. Scope: -Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights -Novel experimental and computational technologies -Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes -Pathway and network analyses of signaling that focus on the roles of post-translational modifications -Studies of proteome dynamics and quality controls, and their roles in disease -Studies of evolutionary processes effecting proteome dynamics, quality and regulation -Chemical proteomics, including mechanisms of drug action -Proteomics of the immune system and antigen presentation/recognition -Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease -Clinical and translational studies of human diseases -Metabolomics to understand functional connections between genes, proteins and phenotypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信