Chronic intermittent hypoxia disrupts protective microgliosis in ischemic proliferative retinopathy.

IF 9.3 1区 医学 Q1 IMMUNOLOGY
Tianxiang Yang, Kaitryn E Ronning, Sébastien Augustin, Frédéric Blond, Caroline Nous, Foteini Argyriou, Sara Touhami, Cécile Delarasse, Xavier Guillonneau, Florian Sennlaub
{"title":"Chronic intermittent hypoxia disrupts protective microgliosis in ischemic proliferative retinopathy.","authors":"Tianxiang Yang, Kaitryn E Ronning, Sébastien Augustin, Frédéric Blond, Caroline Nous, Foteini Argyriou, Sara Touhami, Cécile Delarasse, Xavier Guillonneau, Florian Sennlaub","doi":"10.1186/s12974-025-03392-9","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep apnea that leads to chronic intermittent hypoxia (CIH) is an independent risk factor for advanced, debilitating ischemic proliferative retinopathies, such as diabetic retinopathy (DR) and retinopathy of prematurity (ROP). The underlying mechanisms are unknown. Here we investigated the consequences of CIH on the ischemic retina of the oxygen-induced retinopathy model. We show that experimental CIH inhibited colony stimulating factor 1 (CSF1) expression, blunting the reactive microgliosis during the ischemic phase of OIR. CIH severely delayed beneficial revascularization of the ischemic retina and increased pathological neovascularization. CIH also induced photoreceptor segment thinning and accentuated OIR-induced inner and outer retinal functional deficits. Mechanistically we demonstrated that local CSF1R inhibition during ischemic retinopathy reduced the number of microglial cells, inhibited revascularization, and exacerbated pathological neovascularization, recapitulating the effects of CIH. Our findings provide a novel mechanism by which sleep apnea and CIH aggravate ischemic retinopathies, underscoring the importance of treating apnea in DR and ROP to help prevent sight threatening severe disease.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"82"},"PeriodicalIF":9.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03392-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sleep apnea that leads to chronic intermittent hypoxia (CIH) is an independent risk factor for advanced, debilitating ischemic proliferative retinopathies, such as diabetic retinopathy (DR) and retinopathy of prematurity (ROP). The underlying mechanisms are unknown. Here we investigated the consequences of CIH on the ischemic retina of the oxygen-induced retinopathy model. We show that experimental CIH inhibited colony stimulating factor 1 (CSF1) expression, blunting the reactive microgliosis during the ischemic phase of OIR. CIH severely delayed beneficial revascularization of the ischemic retina and increased pathological neovascularization. CIH also induced photoreceptor segment thinning and accentuated OIR-induced inner and outer retinal functional deficits. Mechanistically we demonstrated that local CSF1R inhibition during ischemic retinopathy reduced the number of microglial cells, inhibited revascularization, and exacerbated pathological neovascularization, recapitulating the effects of CIH. Our findings provide a novel mechanism by which sleep apnea and CIH aggravate ischemic retinopathies, underscoring the importance of treating apnea in DR and ROP to help prevent sight threatening severe disease.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroinflammation
Journal of Neuroinflammation 医学-神经科学
CiteScore
15.90
自引率
3.20%
发文量
276
审稿时长
1 months
期刊介绍: The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes. Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems. The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信