Translational Physiologically Based Pharmacokinetic Modeling to Predict Human Pulmonary Kinetics After Lung Delivery.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Haini Wen, Muhammad Waqas Sadiq, Lena E Friberg, Elin M Svensson
{"title":"Translational Physiologically Based Pharmacokinetic Modeling to Predict Human Pulmonary Kinetics After Lung Delivery.","authors":"Haini Wen, Muhammad Waqas Sadiq, Lena E Friberg, Elin M Svensson","doi":"10.1002/psp4.13316","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting human lung exposure with reasonable certainty of orally inhaled drugs based on preclinical studies remains a challenge for drug development. We have developed a comprehensive physiologically based pharmacokinetic (PBPK) framework tailored for the pulmonary pharmacokinetic (PK) behavior in both humans and rats, aiming to bridge the translational gap. In this study, we present a mechanistic pulmonary PBPK model for rats that integrates the pulmonary disposition processes, including drug deposition, dissolution, mucociliary clearance, and mass transfer in lung tissues. Apparent permeabilities were translated to effective permeabilities (P<sub>eff</sub>) with in vivo-in vitro correlation methods. Unbound tissue-plasma partition coefficients for lung (K<sub>p,u,lung</sub>) and P<sub>eff</sub> were estimated with plasma and lung PK profiles of salbutamol and fluticasone propionate in rats. The developed PBPK model was translated by keeping the estimated parameters and switching physiological and anatomical parameters from rats to humans. Based on PK observations in rats, the estimated typical P<sub>eff</sub> and K<sub>p,u,lung</sub> for salbutamol were 1.18 × 10<sup>-5</sup> cm/s and 8.83 and for fluticasone propionate 1.26 × 10<sup>-4</sup> cm/s and 1086, respectively. After interspecies translation, the model framework well predicted the mean epithelial lining fluid concentrations following oral inhalation of salbutamol and fluticasone propionate in human subjects, with fold-errors of lung-to-plasma ratios < 2. Thus, the proposed general pulmonary PBPK framework exhibits the potential to facilitate interspecies translation and can be used to predict safety and efficacy of lung-delivered therapeutics in human.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.13316","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting human lung exposure with reasonable certainty of orally inhaled drugs based on preclinical studies remains a challenge for drug development. We have developed a comprehensive physiologically based pharmacokinetic (PBPK) framework tailored for the pulmonary pharmacokinetic (PK) behavior in both humans and rats, aiming to bridge the translational gap. In this study, we present a mechanistic pulmonary PBPK model for rats that integrates the pulmonary disposition processes, including drug deposition, dissolution, mucociliary clearance, and mass transfer in lung tissues. Apparent permeabilities were translated to effective permeabilities (Peff) with in vivo-in vitro correlation methods. Unbound tissue-plasma partition coefficients for lung (Kp,u,lung) and Peff were estimated with plasma and lung PK profiles of salbutamol and fluticasone propionate in rats. The developed PBPK model was translated by keeping the estimated parameters and switching physiological and anatomical parameters from rats to humans. Based on PK observations in rats, the estimated typical Peff and Kp,u,lung for salbutamol were 1.18 × 10-5 cm/s and 8.83 and for fluticasone propionate 1.26 × 10-4 cm/s and 1086, respectively. After interspecies translation, the model framework well predicted the mean epithelial lining fluid concentrations following oral inhalation of salbutamol and fluticasone propionate in human subjects, with fold-errors of lung-to-plasma ratios < 2. Thus, the proposed general pulmonary PBPK framework exhibits the potential to facilitate interspecies translation and can be used to predict safety and efficacy of lung-delivered therapeutics in human.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信