Weihe Zhang, Lei Cui, Yeqiong Zhang, Yang He, Xiaoxuan Li, Yu Wang, Jinsong Jiao, Dantao Peng, Ming Jin, Cheng Xiao
{"title":"Pilot Exploration of RGMa-BMP4 Signaling in Neutrophil Activation in NMOSD: Integrating Clinical and Molecular Insights.","authors":"Weihe Zhang, Lei Cui, Yeqiong Zhang, Yang He, Xiaoxuan Li, Yu Wang, Jinsong Jiao, Dantao Peng, Ming Jin, Cheng Xiao","doi":"10.1007/s12035-025-04840-6","DOIUrl":null,"url":null,"abstract":"<p><p>Neuromyelitis optica spectrum disorder (NMOSD) is a disabling autoimmune disease. Neutrophil activation plays a crucial role in the neuroinflammatory damage observed during disease exacerbations. This study aims to elucidate the potential role of the repulsive guidance molecule A-bone morphogenetic protein 4 (RGMa-BMP4) signaling pathway in neutrophil activation during NMOSD attacks. We employed transcriptomic sequencing, quantitative PCR, flow cytometry, and Western blot analysis on peripheral blood samples from NMOSD patients in acute and remission phases. Additionally, an NMO rat model was established to investigate in vivo molecular mechanisms, focusing on key signaling molecules, including RGMa, BMP4, and SMADs. Transcriptomic analysis identified five genes associated with NMOSD pathogenesis or neutrophil activation, with RGMA, EGFR, and HLA-DOB showing the most significant differences. RT-qPCR confirmed elevated levels of RGMA, BMP4, and SMADs in the acute phase. Flow cytometry and Western blotting demonstrated an increased nuclear-to-cytoplasmic ratio of SMAD4 protein in neutrophils from acute-phase NMOSD patients. In the NMO rat model, we observed significant upregulation of RGMA, BMP4, and SMAD4 mRNA in brain and spinal cord tissues, along with enhanced nuclear translocation of SMAD4 protein. Furthermore, there was a marked increase in myeloperoxidase (MPO) mRNA expression, a marker of neutrophil activation, in both brain and spinal cord tissues in the model group. Our findings indicate that the RGMa-BMP4 signaling pathway likely plays a key role in neutrophil-mediated neuroinflammation during NMOSD attacks. These results suggest potential therapeutic targets within this pathway, warranting further investigation into their clinical implications.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"9151-9161"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04840-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a disabling autoimmune disease. Neutrophil activation plays a crucial role in the neuroinflammatory damage observed during disease exacerbations. This study aims to elucidate the potential role of the repulsive guidance molecule A-bone morphogenetic protein 4 (RGMa-BMP4) signaling pathway in neutrophil activation during NMOSD attacks. We employed transcriptomic sequencing, quantitative PCR, flow cytometry, and Western blot analysis on peripheral blood samples from NMOSD patients in acute and remission phases. Additionally, an NMO rat model was established to investigate in vivo molecular mechanisms, focusing on key signaling molecules, including RGMa, BMP4, and SMADs. Transcriptomic analysis identified five genes associated with NMOSD pathogenesis or neutrophil activation, with RGMA, EGFR, and HLA-DOB showing the most significant differences. RT-qPCR confirmed elevated levels of RGMA, BMP4, and SMADs in the acute phase. Flow cytometry and Western blotting demonstrated an increased nuclear-to-cytoplasmic ratio of SMAD4 protein in neutrophils from acute-phase NMOSD patients. In the NMO rat model, we observed significant upregulation of RGMA, BMP4, and SMAD4 mRNA in brain and spinal cord tissues, along with enhanced nuclear translocation of SMAD4 protein. Furthermore, there was a marked increase in myeloperoxidase (MPO) mRNA expression, a marker of neutrophil activation, in both brain and spinal cord tissues in the model group. Our findings indicate that the RGMa-BMP4 signaling pathway likely plays a key role in neutrophil-mediated neuroinflammation during NMOSD attacks. These results suggest potential therapeutic targets within this pathway, warranting further investigation into their clinical implications.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.