ENX-101, a GABAA receptor α2,3,5-selective positive allosteric modulator, displays antiseizure effects in rodent seizure and epilepsy models.

IF 6.6 1区 医学 Q1 CLINICAL NEUROLOGY
Epilepsia Pub Date : 2025-03-15 DOI:10.1111/epi.18340
Jordi Serrats, Krishna C Vadodaria, William Brubaker, Melissa Barker-Haliski, H Steve White, Alexis Evrard, Corinne Roucard, Eve Taylor, Kimberly E Vanover, Stephen Cunningham, Vikram Sudarsan, Michael A Rogawski
{"title":"ENX-101, a GABA<sub>A</sub> receptor α2,3,5-selective positive allosteric modulator, displays antiseizure effects in rodent seizure and epilepsy models.","authors":"Jordi Serrats, Krishna C Vadodaria, William Brubaker, Melissa Barker-Haliski, H Steve White, Alexis Evrard, Corinne Roucard, Eve Taylor, Kimberly E Vanover, Stephen Cunningham, Vikram Sudarsan, Michael A Rogawski","doi":"10.1111/epi.18340","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>γ-Aminobutyric acid type A (GABA<sub>A</sub>) receptor positive allosteric modulators (PAMs) that lack α-subunit selectivity, including benzodiazepines such as diazepam, exhibit antiseizure actions in animal models and in humans. ENX-101 is a deuterated analog of the ⍺2,3,5-selective GABA<sub>A</sub> receptor PAM L-838,417. The purpose of this study was to characterize the α-subunit selectivity of ENX-101 and evaluate its antiseizure potential in preclinical seizure and epilepsy models.</p><p><strong>Methods: </strong>ENX-101 potentiation of GABA chloride current responses in cells expressing recombinant GABA<sub>A</sub> receptors were evaluated using an automated patch clamp assay. Antiseizure effects of ENX-101 were examined in the mouse 6 Hz test at 32 and 44 mA, amygdala kindled rats, and Genetic Absence Epilepsy Rat from Strasbourg (GAERS).</p><p><strong>Results: </strong>ENX-101 displayed partial PAM activity with respect to diazepam at GABA<sub>A</sub> receptors containing α2, α3, or α5 subunits but did not enhance GABA responses of GABA<sub>A</sub> receptors containing α1 subunits. ENX-101 (30, 100, and 300 mg/kg, i.p.) and diazepam protected most animals in the 6 Hz model at 32 mA but was less effective at 44 mA. In amygdala kindled rats, ENX-101 (1-100 mg/kg, p.o.) reduced behavioral seizure severity and afterdischarge duration in a dose-dependent manner. ENX-101 (0.075-100 mg/kg, p.o.) caused dose-dependent, persistent (>130 min) inhibition of spontaneous spike-and-wave discharges (SWDs) in GAERS, whereas diazepam transiently inhibited discharges. ENX-101 did not cause motor impairment, as measured by performance in the rotarod assay.</p><p><strong>Significance: </strong>ENX-101 is an α2,α3,α5-selective GABA<sub>A</sub> receptor PAM that has high potency and partial efficacy. The drug is highly effective in rodent seizure and epilepsy models. ENX-101 is most potent in the GAERS model of absence epilepsy, and active in the 6 Hz model and amygdala kindled rats. These results demonstrate that a partial, subtype-selective GABA<sub>A</sub> receptor PAM has activity in translationally validated preclinical epilepsy screening models. Clinical evaluation of ENX-101 as a treatment for focal and generalized epilepsies is warranted.</p>","PeriodicalId":11768,"journal":{"name":"Epilepsia","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/epi.18340","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: γ-Aminobutyric acid type A (GABAA) receptor positive allosteric modulators (PAMs) that lack α-subunit selectivity, including benzodiazepines such as diazepam, exhibit antiseizure actions in animal models and in humans. ENX-101 is a deuterated analog of the ⍺2,3,5-selective GABAA receptor PAM L-838,417. The purpose of this study was to characterize the α-subunit selectivity of ENX-101 and evaluate its antiseizure potential in preclinical seizure and epilepsy models.

Methods: ENX-101 potentiation of GABA chloride current responses in cells expressing recombinant GABAA receptors were evaluated using an automated patch clamp assay. Antiseizure effects of ENX-101 were examined in the mouse 6 Hz test at 32 and 44 mA, amygdala kindled rats, and Genetic Absence Epilepsy Rat from Strasbourg (GAERS).

Results: ENX-101 displayed partial PAM activity with respect to diazepam at GABAA receptors containing α2, α3, or α5 subunits but did not enhance GABA responses of GABAA receptors containing α1 subunits. ENX-101 (30, 100, and 300 mg/kg, i.p.) and diazepam protected most animals in the 6 Hz model at 32 mA but was less effective at 44 mA. In amygdala kindled rats, ENX-101 (1-100 mg/kg, p.o.) reduced behavioral seizure severity and afterdischarge duration in a dose-dependent manner. ENX-101 (0.075-100 mg/kg, p.o.) caused dose-dependent, persistent (>130 min) inhibition of spontaneous spike-and-wave discharges (SWDs) in GAERS, whereas diazepam transiently inhibited discharges. ENX-101 did not cause motor impairment, as measured by performance in the rotarod assay.

Significance: ENX-101 is an α2,α3,α5-selective GABAA receptor PAM that has high potency and partial efficacy. The drug is highly effective in rodent seizure and epilepsy models. ENX-101 is most potent in the GAERS model of absence epilepsy, and active in the 6 Hz model and amygdala kindled rats. These results demonstrate that a partial, subtype-selective GABAA receptor PAM has activity in translationally validated preclinical epilepsy screening models. Clinical evaluation of ENX-101 as a treatment for focal and generalized epilepsies is warranted.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Epilepsia
Epilepsia 医学-临床神经学
CiteScore
10.90
自引率
10.70%
发文量
319
审稿时长
2-4 weeks
期刊介绍: Epilepsia is the leading, authoritative source for innovative clinical and basic science research for all aspects of epilepsy and seizures. In addition, Epilepsia publishes critical reviews, opinion pieces, and guidelines that foster understanding and aim to improve the diagnosis and treatment of people with seizures and epilepsy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信