Improving patient clustering by incorporating structured variable label relationships in similarity measures.

IF 3.9 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Judith Lambert, Anne-Louise Leutenegger, Anaïs Baudot, Anne-Sophie Jannot
{"title":"Improving patient clustering by incorporating structured variable label relationships in similarity measures.","authors":"Judith Lambert, Anne-Louise Leutenegger, Anaïs Baudot, Anne-Sophie Jannot","doi":"10.1186/s12874-025-02459-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Patient stratification is the cornerstone of numerous health investigations, serving to enhance the estimation of treatment efficacy and facilitating patient matching. To stratify patients, similarity measures between patients can be computed from clinical variables contained in medical health records. These variables have both values and labels structured in ontologies or other classification systems. The relevance of considering variable label relationships in the computation of patient similarity measures has been poorly studied.</p><p><strong>Objective: </strong>We adapt and evaluate several weighted versions of the Cosine similarity in order to consider structured label relationships to compute patient similarities from a medico-administrative database.</p><p><strong>Materials and methods: </strong>As a use case, we clustered patients aged 60 years from their annual medicine reimbursements contained in the Échantillon Généraliste des Bénéficiaires, a random sample of a French medico-administrative database. We used four patient similarity measures: the standard Cosine similarity, a weighted Cosine similarity measure that includes variable frequencies and two weighted Cosine similarity measures that consider variable label relationships. We construct patient networks from each similarity measure and identify clusters of patients using the Markov Cluster algorithm. We evaluate the performance of the different similarity measures with enrichment tests based on patient diagnoses.</p><p><strong>Results: </strong>The weighted similarity measures that include structured variable label relationships perform better to identify similar patients. Indeed, using these weighted measures, we identify more clusters associated with different diagnose enrichment. Importantly, the enrichment tests provide clinically interpretable insights into these patient clusters.</p><p><strong>Conclusion: </strong>Considering label relationships when computing patient similarities improves stratification of patients regarding their health status.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"72"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910865/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-025-02459-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Patient stratification is the cornerstone of numerous health investigations, serving to enhance the estimation of treatment efficacy and facilitating patient matching. To stratify patients, similarity measures between patients can be computed from clinical variables contained in medical health records. These variables have both values and labels structured in ontologies or other classification systems. The relevance of considering variable label relationships in the computation of patient similarity measures has been poorly studied.

Objective: We adapt and evaluate several weighted versions of the Cosine similarity in order to consider structured label relationships to compute patient similarities from a medico-administrative database.

Materials and methods: As a use case, we clustered patients aged 60 years from their annual medicine reimbursements contained in the Échantillon Généraliste des Bénéficiaires, a random sample of a French medico-administrative database. We used four patient similarity measures: the standard Cosine similarity, a weighted Cosine similarity measure that includes variable frequencies and two weighted Cosine similarity measures that consider variable label relationships. We construct patient networks from each similarity measure and identify clusters of patients using the Markov Cluster algorithm. We evaluate the performance of the different similarity measures with enrichment tests based on patient diagnoses.

Results: The weighted similarity measures that include structured variable label relationships perform better to identify similar patients. Indeed, using these weighted measures, we identify more clusters associated with different diagnose enrichment. Importantly, the enrichment tests provide clinically interpretable insights into these patient clusters.

Conclusion: Considering label relationships when computing patient similarities improves stratification of patients regarding their health status.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Medical Research Methodology
BMC Medical Research Methodology 医学-卫生保健
CiteScore
6.50
自引率
2.50%
发文量
298
审稿时长
3-8 weeks
期刊介绍: BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信