Development and Characterization of the [177Lu]Lu-Labeled Anti-CDH17 Nanobody Derivative for Radioimmunotherapy in the Gastric Cancer Xenograft Model.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular Pharmaceutics Pub Date : 2025-04-07 Epub Date: 2025-03-15 DOI:10.1021/acs.molpharmaceut.4c01285
Chenkai Mao, Shicheng Li, Rencai Fan, Jiaqi Zhang, Xinying Fan, Zhen Shentu, Zhixiang Zhuang, Lei Gan
{"title":"Development and Characterization of the [<sup>177</sup>Lu]Lu-Labeled Anti-CDH17 Nanobody Derivative for Radioimmunotherapy in the Gastric Cancer Xenograft Model.","authors":"Chenkai Mao, Shicheng Li, Rencai Fan, Jiaqi Zhang, Xinying Fan, Zhen Shentu, Zhixiang Zhuang, Lei Gan","doi":"10.1021/acs.molpharmaceut.4c01285","DOIUrl":null,"url":null,"abstract":"<p><p>Cadherin 17 (CDH17) is highly expressed in digestive system cancers, and the potential of nanobodies targeting CDH17 as imaging probes and delivery vehicles for radioactive β-particles warrants exploration for their theranostic potential in CDH17-overexpressing gastric cancer (GC). In this study, we screened an anti-CDH17 nanobody library and constructed two antibodies: anti-CDH17 VHH (recombinant nanobody fused with a polyhistidine tag) and anti-CDH17 VHH-ABD (recombinant nanobody fused with an albumin-binding domain). VHH targeting CDH17 and its derivative VHH-ABD were conjugated with DOTA and labeled with radionuclide <sup>177</sup>Lu. The pharmacokinetics and theranostic efficacy of these agents were evaluated in the GC xenograft models. [<sup>177</sup>Lu]Lu-VHH and [<sup>177</sup>Lu]Lu-VHH-ABD exhibited high radiochemical purity (>99%, <i>n</i> = 3) and successfully delineated CDH17-positive gastric cancer tissues on SPECT/CT imaging. Compared with the rapid renal clearance of [<sup>177</sup>Lu]Lu-VHH, [<sup>177</sup>Lu]Lu-VHH-ABD demonstrated prolonged circulation times with increased and sustained tumor accumulation. Survival experiments in the MKN-45 tumor model revealed that two doses of [<sup>177</sup>Lu]Lu-VHH-ABD effectively suppressed tumor growth, with limited systemic biotoxicity. Histological analysis using hematoxylin and eosin (H&E) staining and Ki67 immunohistochemistry confirmed structural disruption and low tumor cell proliferative activity in the tumor tissue. In preclinical studies, [<sup>177</sup>Lu]Lu-anti-CDH17 VHH-ABD demonstrated substantial antitumor efficacy with manageable toxicity, offering promising clinical potential as a viable therapeutic option for CDH17-overexpressing GC.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"2077-2087"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01285","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cadherin 17 (CDH17) is highly expressed in digestive system cancers, and the potential of nanobodies targeting CDH17 as imaging probes and delivery vehicles for radioactive β-particles warrants exploration for their theranostic potential in CDH17-overexpressing gastric cancer (GC). In this study, we screened an anti-CDH17 nanobody library and constructed two antibodies: anti-CDH17 VHH (recombinant nanobody fused with a polyhistidine tag) and anti-CDH17 VHH-ABD (recombinant nanobody fused with an albumin-binding domain). VHH targeting CDH17 and its derivative VHH-ABD were conjugated with DOTA and labeled with radionuclide 177Lu. The pharmacokinetics and theranostic efficacy of these agents were evaluated in the GC xenograft models. [177Lu]Lu-VHH and [177Lu]Lu-VHH-ABD exhibited high radiochemical purity (>99%, n = 3) and successfully delineated CDH17-positive gastric cancer tissues on SPECT/CT imaging. Compared with the rapid renal clearance of [177Lu]Lu-VHH, [177Lu]Lu-VHH-ABD demonstrated prolonged circulation times with increased and sustained tumor accumulation. Survival experiments in the MKN-45 tumor model revealed that two doses of [177Lu]Lu-VHH-ABD effectively suppressed tumor growth, with limited systemic biotoxicity. Histological analysis using hematoxylin and eosin (H&E) staining and Ki67 immunohistochemistry confirmed structural disruption and low tumor cell proliferative activity in the tumor tissue. In preclinical studies, [177Lu]Lu-anti-CDH17 VHH-ABD demonstrated substantial antitumor efficacy with manageable toxicity, offering promising clinical potential as a viable therapeutic option for CDH17-overexpressing GC.

[177Lu] lu标记的抗cdh17纳米体衍生物在胃癌异种移植模型放射免疫治疗中的开发和表征
钙粘蛋白17 (CDH17)在消化系统癌症中高表达,靶向CDH17的纳米体作为放射性β颗粒的成像探针和递送载体的潜力值得探索其在过表达CDH17的胃癌(GC)中的治疗潜力。在这项研究中,我们筛选了抗cdh17纳米体文库,并构建了两种抗体:抗cdh17 VHH(融合多组氨酸标签的重组纳米体)和抗cdh17 VHH- abd(融合白蛋白结合域的重组纳米体)。将靶向CDH17的VHH及其衍生物VHH- abd与DOTA偶联,并用放射性核素177Lu标记。在GC异种移植模型中评估了这些药物的药代动力学和治疗效果。[177Lu]Lu-VHH和[177Lu]Lu-VHH- abd具有较高的放射化学纯度(>99%,n = 3),并在SPECT/CT成像上成功描绘了cdh17阳性的胃癌组织。与[177Lu]Lu-VHH的快速肾脏清除相比,[177Lu]Lu-VHH- abd表现出循环时间延长,肿瘤积累增加且持续。在MKN-45肿瘤模型中的生存实验显示,两剂量[177Lu]Lu-VHH-ABD能有效抑制肿瘤生长,全身生物毒性有限。采用苏木精和伊红(H&E)染色和Ki67免疫组化进行组织学分析,证实肿瘤组织结构破坏,肿瘤细胞增殖活性低。在临床前研究中,[177Lu]Lu-anti-CDH17 VHH-ABD显示出明显的抗肿瘤效果,且毒性可控,作为cdh17过表达GC的可行治疗选择具有良好的临床潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信